{"title":"Automated Segmentation of Breast Arterial Calcifications from Digital Mammography","authors":"Kaier Wang, N. Khan, R. Highnam","doi":"10.1109/IVCNZ48456.2019.8960956","DOIUrl":null,"url":null,"abstract":"Breast arterial calcifications (BACs) are formed when calcium is deposited in the walls of arteries in the breast. The accurate segmentation of BACs is a critical step for risk assessment of cardiovascular disease from a mammogram. This paper evaluates the performance of three deep learning architectures, YOLO, Unet and DeepLabv3+, on detecting BACs in digital mammography. In comparison, a simple Hessian-based multiscale filter is developed to enhance BACs pattern, then a self-adaptive thresholding algorithm is applied to obtain the binary mask of BACs. As BACs are relatively small in size, we developed a new metric to better evaluate the small object segmentation. In this study, 135 digital mammographic images containing labelled BACs were obtained, in which 80% for training deep learning networks and 20% for validation. The results show that our Hessian-based filtering method achieves a highest accuracy on validation data, and DeepLabv3+ falls behind with little effectiveness. We conclude simple filtering technique is effective in BACs extraction, and DeepLabv3+ is an expensive alternative in terms of its computational cost and configuration complexity.","PeriodicalId":217359,"journal":{"name":"2019 International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ48456.2019.8960956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Breast arterial calcifications (BACs) are formed when calcium is deposited in the walls of arteries in the breast. The accurate segmentation of BACs is a critical step for risk assessment of cardiovascular disease from a mammogram. This paper evaluates the performance of three deep learning architectures, YOLO, Unet and DeepLabv3+, on detecting BACs in digital mammography. In comparison, a simple Hessian-based multiscale filter is developed to enhance BACs pattern, then a self-adaptive thresholding algorithm is applied to obtain the binary mask of BACs. As BACs are relatively small in size, we developed a new metric to better evaluate the small object segmentation. In this study, 135 digital mammographic images containing labelled BACs were obtained, in which 80% for training deep learning networks and 20% for validation. The results show that our Hessian-based filtering method achieves a highest accuracy on validation data, and DeepLabv3+ falls behind with little effectiveness. We conclude simple filtering technique is effective in BACs extraction, and DeepLabv3+ is an expensive alternative in terms of its computational cost and configuration complexity.