RuBERT Embeddings in the Task of Classifying User Posts on a Social Media

V. Oliseenko, M. Abramov
{"title":"RuBERT Embeddings in the Task of Classifying User Posts on a Social Media","authors":"V. Oliseenko, M. Abramov","doi":"10.1109/scm55405.2022.9794844","DOIUrl":null,"url":null,"abstract":"This paper presents models for solving the problem of multiclass classification of user posts in a social media. These models are based on embeddings extracted from messages using the RuBert language model and a fully connected neural network built over it. The models presented are compared to a baseline model using long-term short-term memory neurons (LSTM). The results will improve the accuracy of the classification posts, which in turn will improve the accuracy of assessing the psychological characteristics users.","PeriodicalId":162457,"journal":{"name":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scm55405.2022.9794844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents models for solving the problem of multiclass classification of user posts in a social media. These models are based on embeddings extracted from messages using the RuBert language model and a fully connected neural network built over it. The models presented are compared to a baseline model using long-term short-term memory neurons (LSTM). The results will improve the accuracy of the classification posts, which in turn will improve the accuracy of assessing the psychological characteristics users.
RuBERT嵌入在社交媒体用户帖子分类任务中的应用
本文提出了解决社交媒体中用户帖子的多类分类问题的模型。这些模型是基于使用RuBert语言模型从消息中提取的嵌入和在其上构建的全连接神经网络。所提出的模型与使用长短期记忆神经元(LSTM)的基线模型进行了比较。研究结果将提高分类帖子的准确性,进而提高评估用户心理特征的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信