Active Front Steering Controller Design with Side Slip Angle Free Model Matching Approach

Mert Sever, M. S. Arslan
{"title":"Active Front Steering Controller Design with Side Slip Angle Free Model Matching Approach","authors":"Mert Sever, M. S. Arslan","doi":"10.1109/CEIT.2018.8751855","DOIUrl":null,"url":null,"abstract":"A side slip angle free model matching controller (MMC) is designed to improve vehicle yaw stability by active front steering. Optimization of controller gains is specified by a classical LQR problem. Additionally, LQR controller gains are structured to enable side slip angle free design. Design of an LQR having a structured controller gain is formulated as a convex optimization problem subject to linear matrix inequalities (LMIs) constraints. The proposed controller is designed with an augmented state space model including a linear bicycle model and model matching error dynamics. Superiority of the proposed controller is shown by numerically comparing with a classical full state feedback LQR. In order to obtain realistic results; a three-degrees-of-freedom nonlinear vehicle model is used. The nonlinear vehicle model is composed of lateral, yaw and longitudinal motions with the well-known Magic Formula tire model. Simulation results show that the proposed structured MMC provides very compatible performance with full state feedback LQR design.","PeriodicalId":357613,"journal":{"name":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2018.8751855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A side slip angle free model matching controller (MMC) is designed to improve vehicle yaw stability by active front steering. Optimization of controller gains is specified by a classical LQR problem. Additionally, LQR controller gains are structured to enable side slip angle free design. Design of an LQR having a structured controller gain is formulated as a convex optimization problem subject to linear matrix inequalities (LMIs) constraints. The proposed controller is designed with an augmented state space model including a linear bicycle model and model matching error dynamics. Superiority of the proposed controller is shown by numerically comparing with a classical full state feedback LQR. In order to obtain realistic results; a three-degrees-of-freedom nonlinear vehicle model is used. The nonlinear vehicle model is composed of lateral, yaw and longitudinal motions with the well-known Magic Formula tire model. Simulation results show that the proposed structured MMC provides very compatible performance with full state feedback LQR design.
基于无侧偏角模型匹配方法的主动前转向控制器设计
设计了一种无侧偏角模型匹配控制器(MMC),通过主动前转向提高车辆的偏航稳定性。控制器增益的优化是由一个经典的LQR问题指定的。此外,LQR控制器增益的结构使侧滑角无设计。具有结构化控制器增益的LQR的设计是一个受线性矩阵不等式(lmi)约束的凸优化问题。该控制器采用增广状态空间模型,包括线性循环模型和模型匹配误差动力学。通过与经典的全状态反馈LQR的数值比较,证明了该控制器的优越性。以获得切合实际的效果;采用三自由度非线性车辆模型。非线性车辆模型由横向、偏航和纵向运动组成,采用著名的魔术公式轮胎模型。仿真结果表明,所提出的结构化MMC与全状态反馈LQR设计具有良好的兼容性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信