Cycle length distributions in graphical models for iterative decoding

Xianping Ge, D. Eppstein, Padhraic Smyth
{"title":"Cycle length distributions in graphical models for iterative decoding","authors":"Xianping Ge, D. Eppstein, Padhraic Smyth","doi":"10.1109/ISIT.2000.866440","DOIUrl":null,"url":null,"abstract":"This paper analyses the distribution of cycle lengths in turbo decoding graphs. It is known that the widely-used iterative decoding algorithm for turbo codes is in fact a special case of a quite general local message-passing algorithm for efficiently computing posterior probabilities in acyclic directed graphical (ADG) models (also known as \"belief networks\"). However, this local message-passing algorithm in theory only works for graphs with no cycles. Why it works in practice (i.e., performs near-optimally in terms of bit decisions) on ADGs for turbo codes is not well understood since turbo decoding graphs can have many cycles.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyses the distribution of cycle lengths in turbo decoding graphs. It is known that the widely-used iterative decoding algorithm for turbo codes is in fact a special case of a quite general local message-passing algorithm for efficiently computing posterior probabilities in acyclic directed graphical (ADG) models (also known as "belief networks"). However, this local message-passing algorithm in theory only works for graphs with no cycles. Why it works in practice (i.e., performs near-optimally in terms of bit decisions) on ADGs for turbo codes is not well understood since turbo decoding graphs can have many cycles.
迭代译码图形模型中的周期长度分布
本文分析了turbo译码图中周期长度的分布。众所周知,广泛使用的turbo码迭代解码算法实际上是一种非常通用的局部消息传递算法的特殊情况,用于有效地计算无环有向图(ADG)模型(也称为“信念网络”)中的后验概率。然而,这种局部消息传递算法在理论上只适用于没有循环的图。为什么它在实践中工作(即,在位决策方面执行接近最佳)对于涡轮码的adg,因为涡轮解码图可以有许多周期,所以还没有很好地理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信