Sentimen Ulasan Destinasi Wisata Pulau Bali Menggunakan Bidirectional Long Short Term Memory

Dwi Intan Af’idah, Dairoh Dairoh, Sharfina Febbi Handayani, Riszki Wijayatun Pratiwi, Susi Indah Sari
{"title":"Sentimen Ulasan Destinasi Wisata Pulau Bali Menggunakan Bidirectional Long Short Term Memory","authors":"Dwi Intan Af’idah, Dairoh Dairoh, Sharfina Febbi Handayani, Riszki Wijayatun Pratiwi, Susi Indah Sari","doi":"10.30812/matrik.v21i3.1402","DOIUrl":null,"url":null,"abstract":"Pemerintah dan pelaku industri pariwisata mengalami permasalahan dalam menentukan prioritas pengembangan suatu destinasi wisata. Karena itu, diperlukan identifikasi objek wisata yang diminati namun banyak mendapat ulasan buruk melalui ulasan dari masyarakat yang tersebar di internet. Penelitian ini bertujuan melakukan analisis sentimen terhadap ulasan objek wisata di Pulau Bali menggunakan Bi-LSTM dan Word2Vec, sehingga diperoleh model terbaik yang dapat digunakan untuk mengidentifikasi objek wisata potensial namun mendapat ulasan buruk. Bi-LSTM merupakan deep learning yang menawarkan akurasi yang lebih baik daripada LSTM biasa. Sedangkan Word2Vec merupakan pretraining yang dipilih karena dapat menangkap makna semantik teks. Penelitian ini menggunakan data ulasan objek wisata di Pulau Bali yang berasal dari situs tripadvisor.com. Penelitian dimulai dari pengumpulan data, perancangan alur program, preprocessing, pretraining Word2Vec, pembagian data uji dan data latih, pelatihan dan pengujian, serta evaluasi penentuan model terbaik. Akurasi terbaik dihasilkan oleh kombisasi Word2Vec terdiri dari CBOW, Hierarchical Softmax, dimensi 200, Bi-LSTM dengan dropout sebesar 0,5 dan learning rate sebesar 0,0001. Kombinasi tersebut menghasilkan akurasi tertinggi dari keseluruhan 108 kombinasi yaitu sebesar 96,86%, precission sebesar 96,53%, Recall sebesar 96,31%, F1 Measure sebesar 96,41%. Akurasi yang baik tersebut membuktikan bahwa kombinasi parameter Bi-LSTM dan Word2Vec cocok digunakan untuk analisis sentimen ulasan objek wisata di Pulau Bali.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i3.1402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Pemerintah dan pelaku industri pariwisata mengalami permasalahan dalam menentukan prioritas pengembangan suatu destinasi wisata. Karena itu, diperlukan identifikasi objek wisata yang diminati namun banyak mendapat ulasan buruk melalui ulasan dari masyarakat yang tersebar di internet. Penelitian ini bertujuan melakukan analisis sentimen terhadap ulasan objek wisata di Pulau Bali menggunakan Bi-LSTM dan Word2Vec, sehingga diperoleh model terbaik yang dapat digunakan untuk mengidentifikasi objek wisata potensial namun mendapat ulasan buruk. Bi-LSTM merupakan deep learning yang menawarkan akurasi yang lebih baik daripada LSTM biasa. Sedangkan Word2Vec merupakan pretraining yang dipilih karena dapat menangkap makna semantik teks. Penelitian ini menggunakan data ulasan objek wisata di Pulau Bali yang berasal dari situs tripadvisor.com. Penelitian dimulai dari pengumpulan data, perancangan alur program, preprocessing, pretraining Word2Vec, pembagian data uji dan data latih, pelatihan dan pengujian, serta evaluasi penentuan model terbaik. Akurasi terbaik dihasilkan oleh kombisasi Word2Vec terdiri dari CBOW, Hierarchical Softmax, dimensi 200, Bi-LSTM dengan dropout sebesar 0,5 dan learning rate sebesar 0,0001. Kombinasi tersebut menghasilkan akurasi tertinggi dari keseluruhan 108 kombinasi yaitu sebesar 96,86%, precission sebesar 96,53%, Recall sebesar 96,31%, F1 Measure sebesar 96,41%. Akurasi yang baik tersebut membuktikan bahwa kombinasi parameter Bi-LSTM dan Word2Vec cocok digunakan untuk analisis sentimen ulasan objek wisata di Pulau Bali.
各国政府和旅游业人士在确定旅游目的地发展优先事项方面遇到了困难。因此,需要确定感兴趣的旅游景点,但许多人通过对互联网上的人们的评论得到了负面的评论。这项研究的目的是用Bi-LSTM和Word2Vec对巴厘岛旅游景点的评论进行情感分析,从而获得了最好的模型,可以用来识别潜在的旅游对象,但得到了不好的评价。对于深度学习来说,它比普通智力更准确。而Word2Vec是选择的准备文本,因为它可以捕捉文本的语义意义。该研究采用了来自tripadference.com网站的巴厘岛旅游景点审查数据。研究开始于数据收集、程序设计、预加工、前期培训、分析测试和培训数据、培训和测试以及对最佳模型的评估。最佳的准确性是由CBOW,级二维max,尺寸为200,双lstm, 0.5是dropout,学习速率为0.0001。这一组合的最高准确性为96.86%,precission为96.53%,Recall为96.31%,F1 Measure为96,41%。精准的确确度证明了参数Bi-LSTM和Word2Vec的组合适合对巴厘岛旅游对象的情绪分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信