Density Evolution for GF(q) LDPC Codes Via Simplified Message-passing Sets

B. Kurkoski, K. Yamaguchi, K. Kobayashi
{"title":"Density Evolution for GF(q) LDPC Codes Via Simplified Message-passing Sets","authors":"B. Kurkoski, K. Yamaguchi, K. Kobayashi","doi":"10.1109/ITA.2007.4357586","DOIUrl":null,"url":null,"abstract":"A message-passing decoder for GF(q) low-density parity-check codes is defined, which uses discrete messages from a subset of all possible binary vectors of length q. The proposed algorithm is a generalization to GF(q) of Richardson and Urbanke's decoding \"Algorithm E\" for binary codes. Density evolution requires a mapping between the probability distribution spaces for the channel, variable and check messages, and under the proposed algorithm, exact density evolution is possible. Symmetries in the message densities permit reduction in the size of the probability distribution space. Noise thresholds are obtained for LDPC codes on discrete memoryless channels, and as with Algorithm E, are remarkably close to noise thresholds under more complex belief propagation decoding.","PeriodicalId":439952,"journal":{"name":"2007 Information Theory and Applications Workshop","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2007.4357586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A message-passing decoder for GF(q) low-density parity-check codes is defined, which uses discrete messages from a subset of all possible binary vectors of length q. The proposed algorithm is a generalization to GF(q) of Richardson and Urbanke's decoding "Algorithm E" for binary codes. Density evolution requires a mapping between the probability distribution spaces for the channel, variable and check messages, and under the proposed algorithm, exact density evolution is possible. Symmetries in the message densities permit reduction in the size of the probability distribution space. Noise thresholds are obtained for LDPC codes on discrete memoryless channels, and as with Algorithm E, are remarkably close to noise thresholds under more complex belief propagation decoding.
基于简化消息传递集的GF(q) LDPC码的密度演化
定义了GF(q)低密度奇偶校验码的消息传递解码器,该解码器使用来自长度为q的所有可能二进制向量子集的离散消息。所提出的算法是Richardson和Urbanke的二进制码解码“算法E”对GF(q)的推广。密度演化需要信道、变量和校验消息的概率分布空间之间的映射,在该算法下,可以实现精确的密度演化。消息密度的对称性允许减少概率分布空间的大小。在离散无记忆信道上得到LDPC码的噪声阈值,与算法E一样,在更复杂的信念传播译码下,噪声阈值非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信