Image Generation Model Applying PCA on Latent Space

Myungseo Song, Asim Niaz, K. Choi
{"title":"Image Generation Model Applying PCA on Latent Space","authors":"Myungseo Song, Asim Niaz, K. Choi","doi":"10.1145/3590003.3590080","DOIUrl":null,"url":null,"abstract":"Image generation is an important area of artificial intelligence that involves creating new images from existing datasets. It involves learning the distribution of target images from randomly generated vectors. Like other deep learning models, the image generation model requires a vast refined data set to produce high-quality results. When there is little data, there is a problem that the diversity and quality of generated images are compromised. In this paper, we propose a new generative model that applies PCA to the generator of the least square error adversarial generative network that, in turn, generates high-quality images even with a small data set. Unlike the existing models that generate target data from randomly generated noise, in the proposed method the direction of the image to be generated is guided by extracting the features of the target data through PCA. The results section shows the superior performance of the proposed model against a different number of images in datasets.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"63 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image generation is an important area of artificial intelligence that involves creating new images from existing datasets. It involves learning the distribution of target images from randomly generated vectors. Like other deep learning models, the image generation model requires a vast refined data set to produce high-quality results. When there is little data, there is a problem that the diversity and quality of generated images are compromised. In this paper, we propose a new generative model that applies PCA to the generator of the least square error adversarial generative network that, in turn, generates high-quality images even with a small data set. Unlike the existing models that generate target data from randomly generated noise, in the proposed method the direction of the image to be generated is guided by extracting the features of the target data through PCA. The results section shows the superior performance of the proposed model against a different number of images in datasets.
基于PCA的隐空间图像生成模型
图像生成是人工智能的一个重要领域,涉及从现有数据集创建新图像。它涉及到从随机生成的向量中学习目标图像的分布。与其他深度学习模型一样,图像生成模型需要大量精细的数据集才能产生高质量的结果。当数据量很少时,产生的图像的多样性和质量就会受到影响。在本文中,我们提出了一种新的生成模型,该模型将PCA应用于最小二乘误差对抗生成网络的生成器,反过来,即使使用小数据集也能生成高质量的图像。与现有的从随机产生的噪声中生成目标数据的模型不同,该方法通过PCA提取目标数据的特征来引导生成图像的方向。结果部分显示了针对数据集中不同数量的图像所提出的模型的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信