Explicit and asymptotic formulae for Vasyunin-cotangent sums

M. Goubi, A. Bayad, M. Hernane
{"title":"Explicit and asymptotic formulae for Vasyunin-cotangent sums","authors":"M. Goubi, A. Bayad, M. Hernane","doi":"10.2298/PIM1716155G","DOIUrl":null,"url":null,"abstract":"For coprime numbers p and q, we consider the Vasyunin–cotangent sum (0.1) V (q, p) = p−1 ∑ k=1 {kq p } cot (πk p ) . First, we prove explicit formula for the symmetric sum V (p, q)+V (q, p) which is a new reciprocity law for the sums (0.1). This formula can be seen as a complement to the Bettin–Conrey result [13, Theorem 1]. Second, we establish asymptotic formula for V (p, q). Finally, by use of continued fraction theory, we give formula for V (p, q) in terms of continued fraction of p q .","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1716155G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

For coprime numbers p and q, we consider the Vasyunin–cotangent sum (0.1) V (q, p) = p−1 ∑ k=1 {kq p } cot (πk p ) . First, we prove explicit formula for the symmetric sum V (p, q)+V (q, p) which is a new reciprocity law for the sums (0.1). This formula can be seen as a complement to the Bettin–Conrey result [13, Theorem 1]. Second, we establish asymptotic formula for V (p, q). Finally, by use of continued fraction theory, we give formula for V (p, q) in terms of continued fraction of p q .
vasyunin -cotan和的显式和渐近公式
对于素数p和q,我们考虑vasyunin - cotan和(0.1)V (q, p) = p−1∑k=1 {kq p} cot (πk p)。首先,我们证明了对称和V (p, q)+V (q, p)的显式公式,这是和(0.1)的一个新的互易律。这个公式可以看作是对Bettin-Conrey结果[13,定理1]的补充。其次,建立了V (p, q)的渐近公式。最后,利用连分数理论,给出了V (p, q)关于pq的连分数的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信