Human Action Retrieval via efficient feature matching

Jun Tang, Ling Shao, Xiantong Zhen
{"title":"Human Action Retrieval via efficient feature matching","authors":"Jun Tang, Ling Shao, Xiantong Zhen","doi":"10.1109/AVSS.2013.6636657","DOIUrl":null,"url":null,"abstract":"As a large proportion of the available video media concerns humans, human action retrieval is posed as a new topic in the domain of content-based video retrieval. For retrieving complex human actions, measuring the similarity between two videos represented by local features is a critical issue. In this paper, a fast and explicit feature correspondence approach is presented to compute the match cost serving as the similarity metric. Then the proposed similarity metric is embedded into the framework of manifold ranking for action retrieval. In contrast to the Bag-of-Words model and its variants, our method yields an encouraging improvement of accuracy on the KTH and the UCF YouTube datasets with reasonably efficient computation.","PeriodicalId":336903,"journal":{"name":"2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2013.6636657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

As a large proportion of the available video media concerns humans, human action retrieval is posed as a new topic in the domain of content-based video retrieval. For retrieving complex human actions, measuring the similarity between two videos represented by local features is a critical issue. In this paper, a fast and explicit feature correspondence approach is presented to compute the match cost serving as the similarity metric. Then the proposed similarity metric is embedded into the framework of manifold ranking for action retrieval. In contrast to the Bag-of-Words model and its variants, our method yields an encouraging improvement of accuracy on the KTH and the UCF YouTube datasets with reasonably efficient computation.
基于高效特征匹配的人类行为检索
由于现有视频媒体中有很大一部分与人类有关,人类行为检索成为基于内容的视频检索领域的一个新课题。对于检索复杂的人类行为,测量由局部特征表示的两个视频之间的相似性是一个关键问题。本文提出了一种快速、显式的特征对应方法来计算作为相似度度量的匹配代价。然后将所提出的相似度度量嵌入到流形排序框架中,用于动作检索。与Bag-of-Words模型及其变体相比,我们的方法在KTH和UCF YouTube数据集上的精度得到了令人鼓舞的提高,计算效率相当高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信