Efficient Deterministic Conditional Sampling of Multivariate Gaussian Densities

Daniel Frisch, U. Hanebeck
{"title":"Efficient Deterministic Conditional Sampling of Multivariate Gaussian Densities","authors":"Daniel Frisch, U. Hanebeck","doi":"10.1109/MFI49285.2020.9235212","DOIUrl":null,"url":null,"abstract":"We propose a fast method for deterministic multi-variate Gaussian sampling. In many application scenarios, the commonly used stochastic Gaussian sampling could simply be replaced by our method – yielding comparable results with a much smaller number of samples. Conformity between the reference Gaussian density function and the distribution of samples is established by minimizing a distance measure between Gaussian density and Dirac mixture density. A modified Cramér-von Mises distance of the Localized Cumulative Distributions (LCDs) of the two densities is employed that allows a direct comparison between continuous and discrete densities in higher dimensions. Because numerical minimization of this distance measure is not feasible under real time constraints, we propose to build a library that maintains sample locations from the standard normal distribution as a template for each number of samples in each dimension. During run time, the requested sample set is re-scaled according to the eigenvalues of the covariance matrix, rotated according to the eigenvectors, and translated according to the mean vector, thus adequately representing arbitrary multivariate normal distributions.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a fast method for deterministic multi-variate Gaussian sampling. In many application scenarios, the commonly used stochastic Gaussian sampling could simply be replaced by our method – yielding comparable results with a much smaller number of samples. Conformity between the reference Gaussian density function and the distribution of samples is established by minimizing a distance measure between Gaussian density and Dirac mixture density. A modified Cramér-von Mises distance of the Localized Cumulative Distributions (LCDs) of the two densities is employed that allows a direct comparison between continuous and discrete densities in higher dimensions. Because numerical minimization of this distance measure is not feasible under real time constraints, we propose to build a library that maintains sample locations from the standard normal distribution as a template for each number of samples in each dimension. During run time, the requested sample set is re-scaled according to the eigenvalues of the covariance matrix, rotated according to the eigenvectors, and translated according to the mean vector, thus adequately representing arbitrary multivariate normal distributions.
多元高斯密度的高效确定性条件抽样
提出了一种快速的确定性多变量高斯抽样方法。在许多应用场景中,常用的随机高斯抽样可以简单地用我们的方法代替——用更少的样本数量产生可比的结果。通过最小化高斯密度与Dirac混合密度之间的距离,建立了参考高斯密度函数与样本分布的一致性。采用了两个密度的局部累积分布(lcd)的改进cram -von Mises距离,允许在更高维度上对连续密度和离散密度进行直接比较。由于这种距离度量的数值最小化在实时约束下是不可行的,因此我们建议建立一个库,该库维护来自标准正态分布的样本位置,作为每个维度中每个样本数量的模板。在运行时,所请求的样本集根据协方差矩阵的特征值重新缩放,根据特征向量旋转,并根据平均向量平移,从而充分表示任意多元正态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信