On Some Applications and Open Problems about (m-Groups)

O. V. Shtawzen
{"title":"On Some Applications and Open Problems about (m-Groups)","authors":"O. V. Shtawzen","doi":"10.54216/gjmsa.010105","DOIUrl":null,"url":null,"abstract":"The generalizations of abelian groups have been studied widely because of their importance in classification theorem and representation. A group G is called an m-power closed group or (m-group) if and only if it has the following property xm ym=zm ∀x,y ∈ G and for z ∈ G. This paper studies a special case of m-groups, when G is a finite m-group and n-group at the same time with relatively prime integers m and n, which is called a Monic group. It presents the necessary and sufficient conditions for a monic group G to be cyclic, abelian, nilpotent, and solvable by the corresponding property of its power subgroups Gm , Gn. Also, this work introduces three open problems in the theory of finite groups.","PeriodicalId":299243,"journal":{"name":"Galoitica: Journal of Mathematical Structures and Applications","volume":"320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galoitica: Journal of Mathematical Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/gjmsa.010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The generalizations of abelian groups have been studied widely because of their importance in classification theorem and representation. A group G is called an m-power closed group or (m-group) if and only if it has the following property xm ym=zm ∀x,y ∈ G and for z ∈ G. This paper studies a special case of m-groups, when G is a finite m-group and n-group at the same time with relatively prime integers m and n, which is called a Monic group. It presents the necessary and sufficient conditions for a monic group G to be cyclic, abelian, nilpotent, and solvable by the corresponding property of its power subgroups Gm , Gn. Also, this work introduces three open problems in the theory of finite groups.
关于(m-群)的一些应用和开放问题
由于阿贝尔群的泛化在分类定理和表示中具有重要意义,因此得到了广泛的研究。群G称为m幂闭群或(m群),当且仅当它具有下列性质xm ym=zm∀x,y∈G, for z∈G。本文研究m群的一种特殊情况,当G同时是一个有限的m群和n群,具有相对素数m和n,称为Monic群。给出单群G是循环的、阿贝尔的、幂零的,并由其幂子群Gm、Gn的相应性质可解的充要条件。同时,介绍了有限群理论中的三个开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信