Exploiting Compressive Sensing Basis Selection to Improve 2 × 2 MIMO Radar Image

N. Rojhani, M. Passafiume, M. Lucarelli, G. Collodi, A. Cidronali
{"title":"Exploiting Compressive Sensing Basis Selection to Improve 2 × 2 MIMO Radar Image","authors":"N. Rojhani, M. Passafiume, M. Lucarelli, G. Collodi, A. Cidronali","doi":"10.1109/ICMIM48759.2020.9299018","DOIUrl":null,"url":null,"abstract":"This paper presents a novel technique suitable to build a basis matrix for image recovery in Compressive Sensing Multiple-Input Multiple-Output (CS-MIMO) radar. The proposed technique selects the best sparsifying basis matrix through the use of Gaussian noise, achieving the $\\mathrm{R}^{N}$ orthonormal space base with the sparsest structure. A comparison is made between the performance of this optimized basis matrix with both the Fast Fourier Transformation (FFT) and the Haar wavelet. Improvement with respect to optimum Nyquist criterion is quantitatively evaluated by using the effective Target peak to Secondary peak Ratio (TSR). Experimental data on a MIMO radar shows that this basic matrix maintains the Field of View (FOV), while improving the angular resolution with respect to the prior sparsity matrix.","PeriodicalId":150515,"journal":{"name":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM48759.2020.9299018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a novel technique suitable to build a basis matrix for image recovery in Compressive Sensing Multiple-Input Multiple-Output (CS-MIMO) radar. The proposed technique selects the best sparsifying basis matrix through the use of Gaussian noise, achieving the $\mathrm{R}^{N}$ orthonormal space base with the sparsest structure. A comparison is made between the performance of this optimized basis matrix with both the Fast Fourier Transformation (FFT) and the Haar wavelet. Improvement with respect to optimum Nyquist criterion is quantitatively evaluated by using the effective Target peak to Secondary peak Ratio (TSR). Experimental data on a MIMO radar shows that this basic matrix maintains the Field of View (FOV), while improving the angular resolution with respect to the prior sparsity matrix.
利用压缩感知基选择改进2 × 2 MIMO雷达图像
提出了一种适用于压缩感知多输入多输出(CS-MIMO)雷达图像恢复的基矩阵构建方法。该方法利用高斯噪声选择最佳稀疏化基矩阵,实现结构最稀疏的$\ mathm {R}^{N}$标准正交空间基。将优化后的基矩阵与快速傅里叶变换(FFT)和哈尔小波的性能进行了比较。利用有效目标峰与次峰比(TSR)对最优奈奎斯特准则的改进进行了定量评价。在MIMO雷达上的实验数据表明,该基本矩阵在保持视场(FOV)的同时,相对于先验稀疏矩阵提高了角分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信