John Joshua F. Montañez, Anton Louise P. de Ocampo
{"title":"Coupled Finite Element Method-Boundary Element Method on Microstrip Transmission Line","authors":"John Joshua F. Montañez, Anton Louise P. de Ocampo","doi":"10.1109/TENSYMP55890.2023.10223657","DOIUrl":null,"url":null,"abstract":"Combining the Finite Element Method (FEM) and Boundary Element Method (BEM) opened a wide array of solutions for ordinary and partial differential equations deemed helpful for engineers and scientists. These methods were applied in various branches of sciences and engineering, especially in computational electromagnetics. This study used computational software to illustrate the coupled FEM-BEM solution in a Microstrip Transmission Line. The processes in coupled FEM-BEM solution were observed, i.e., discretize, derive, assemble, and solve for the Electric Field Intensity and Potential solution regions. The triangular and quadrilateral elements are the geometries used in the discretization process. The number of elements using triangular elements garnered the highest number produced compared to quadrilateral elements. Moreover, the number of nodes produced is constant regardless of the elements utilized. Lower capacitance was noted using quadrilateral elements compared to triangular elements.","PeriodicalId":314726,"journal":{"name":"2023 IEEE Region 10 Symposium (TENSYMP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP55890.2023.10223657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Combining the Finite Element Method (FEM) and Boundary Element Method (BEM) opened a wide array of solutions for ordinary and partial differential equations deemed helpful for engineers and scientists. These methods were applied in various branches of sciences and engineering, especially in computational electromagnetics. This study used computational software to illustrate the coupled FEM-BEM solution in a Microstrip Transmission Line. The processes in coupled FEM-BEM solution were observed, i.e., discretize, derive, assemble, and solve for the Electric Field Intensity and Potential solution regions. The triangular and quadrilateral elements are the geometries used in the discretization process. The number of elements using triangular elements garnered the highest number produced compared to quadrilateral elements. Moreover, the number of nodes produced is constant regardless of the elements utilized. Lower capacitance was noted using quadrilateral elements compared to triangular elements.