Generating Sea Surface Object Image Using Image-to-Image Translation

Wenbin Yin, Jun Yu, Zhi-yi Hu
{"title":"Generating Sea Surface Object Image Using Image-to-Image Translation","authors":"Wenbin Yin, Jun Yu, Zhi-yi Hu","doi":"10.21307/ijanmc-2021-016","DOIUrl":null,"url":null,"abstract":"Abstract Sea objects training, the conditional adversarial networks require a large number of images to solve image-to-image translation problems. In the case of insufficient samples, it leads to network overfitting and poor training results. This project proposes a conditional adversarial generative model that retains the original background features in the absence of paired samples. The goal of this project is to reduce the deviation of the corresponding output from the original input. Firstly, the object images of different categories are labeled with color masks. Second, sea objects are generated randomly in the original background using model of this project. Finally, the generated results of this approach are compared with other approaches. The experimental results show that, compared with results from other conditional adversarial generative models, the generated object images using model of this project have the characteristics of richer texture and clearer structure.","PeriodicalId":193299,"journal":{"name":"International Journal of Advanced Network, Monitoring and Controls","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Network, Monitoring and Controls","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijanmc-2021-016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Sea objects training, the conditional adversarial networks require a large number of images to solve image-to-image translation problems. In the case of insufficient samples, it leads to network overfitting and poor training results. This project proposes a conditional adversarial generative model that retains the original background features in the absence of paired samples. The goal of this project is to reduce the deviation of the corresponding output from the original input. Firstly, the object images of different categories are labeled with color masks. Second, sea objects are generated randomly in the original background using model of this project. Finally, the generated results of this approach are compared with other approaches. The experimental results show that, compared with results from other conditional adversarial generative models, the generated object images using model of this project have the characteristics of richer texture and clearer structure.
使用图像到图像的转换生成海面物体图像
摘要在海洋物体训练中,条件对抗网络需要大量的图像来解决图像到图像的翻译问题。在样本不足的情况下,会导致网络过拟合,训练效果不佳。本项目提出了一个条件对抗生成模型,在没有配对样本的情况下保留原始背景特征。该项目的目标是减少相应的输出与原始输入的偏差。首先,对不同类别的目标图像进行彩色蒙版标记;其次,利用本课题的模型在原始背景中随机生成海洋目标。最后,将该方法生成的结果与其他方法进行了比较。实验结果表明,与其他条件对抗生成模型的结果相比,本项目模型生成的目标图像具有纹理更丰富、结构更清晰的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信