Minimal Markov chain embeddings of pattern problems

M. Lladser
{"title":"Minimal Markov chain embeddings of pattern problems","authors":"M. Lladser","doi":"10.1109/ITA.2007.4357588","DOIUrl":null,"url":null,"abstract":"The Markov chain embedding technique is commonly used to study the distribution of statistics associated with regular patterns (i.e. set of strings described by a regular expression) in random strings. In this extended abstract, we formalize the concept Markov chain embedding for random strings produced by a possibly non-stationary Markov source. A notion of memory conveyed by the states of a deterministic finite automaton is introduced. This notion is used to characterize the smallest state-space size Markov chain required to specify the distribution of the count statistic of a given regular pattern. The research finds applications in problems associated with regular patterns in random strings that demand exponentially large state spaces.","PeriodicalId":439952,"journal":{"name":"2007 Information Theory and Applications Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2007.4357588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The Markov chain embedding technique is commonly used to study the distribution of statistics associated with regular patterns (i.e. set of strings described by a regular expression) in random strings. In this extended abstract, we formalize the concept Markov chain embedding for random strings produced by a possibly non-stationary Markov source. A notion of memory conveyed by the states of a deterministic finite automaton is introduced. This notion is used to characterize the smallest state-space size Markov chain required to specify the distribution of the count statistic of a given regular pattern. The research finds applications in problems associated with regular patterns in random strings that demand exponentially large state spaces.
最小马尔可夫链嵌入模式问题
马尔可夫链嵌入技术通常用于研究随机字符串中与正则模式(即正则表达式描述的字符串集合)相关的统计量的分布。在这个扩展摘要中,我们形式化了由可能非平稳马尔可夫源产生的随机字符串的马尔可夫链嵌入的概念。引入了由确定性有限自动机的状态所传达的记忆概念。这个概念用于描述指定给定规则模式的计数统计分布所需的最小状态空间大小的马尔可夫链。该研究发现了与随机字符串中的规则模式相关的问题的应用,这些问题需要指数级大的状态空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信