Selective Domain Adaptation Network for Lithium-ion Battery Health Monitoring

Mengqi Miao, Jianbo Yu, Pu Yang, Shang Yue, Ruixu Zhou
{"title":"Selective Domain Adaptation Network for Lithium-ion Battery Health Monitoring","authors":"Mengqi Miao, Jianbo Yu, Pu Yang, Shang Yue, Ruixu Zhou","doi":"10.1109/ICPHM57936.2023.10193908","DOIUrl":null,"url":null,"abstract":"Lithium-ion battery health monitoring is crucial in ensuring the reliability of the power system. Due to complex and dynamic battery operating conditions (e.g., ambient temperature and discharge current), domain shift is an ineluctable issue in battery health monitoring. In this study, a novel transfer learning (TL) method, i.e., selective domain adaptation network (SDANet) is developed for solving the problem of domain shift and performing battery health monitoring. Firstly, an unsupervised domain selection mechanism is established to select the optimal source domain, so as to minimize negative transfer in TL. Then, an adaptive feature transmission mechanism (AFTM) is proposed to improve gradient propagation and the performance of feature learning. Thirdly, the selective domain adaptation method is carried out according to channel similarity, which effectively solves the problem of domain shift and improves the performance of battery health estimation. The experiment results demonstrate that SDANet has excellent battery health monitoring performance under various working conditions.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM57936.2023.10193908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion battery health monitoring is crucial in ensuring the reliability of the power system. Due to complex and dynamic battery operating conditions (e.g., ambient temperature and discharge current), domain shift is an ineluctable issue in battery health monitoring. In this study, a novel transfer learning (TL) method, i.e., selective domain adaptation network (SDANet) is developed for solving the problem of domain shift and performing battery health monitoring. Firstly, an unsupervised domain selection mechanism is established to select the optimal source domain, so as to minimize negative transfer in TL. Then, an adaptive feature transmission mechanism (AFTM) is proposed to improve gradient propagation and the performance of feature learning. Thirdly, the selective domain adaptation method is carried out according to channel similarity, which effectively solves the problem of domain shift and improves the performance of battery health estimation. The experiment results demonstrate that SDANet has excellent battery health monitoring performance under various working conditions.
锂离子电池健康监测的选择性域自适应网络
锂离子电池健康监测是保证电力系统可靠性的关键。由于电池工作条件的复杂性和动态性(如环境温度和放电电流),域漂移是电池健康监测中不可避免的问题。本文提出了一种新的迁移学习(TL)方法,即选择性域适应网络(SDANet),用于解决域转移问题并进行电池健康监测。首先,建立了一种无监督域选择机制来选择最优源域,使TL中的负迁移最小化;然后,提出了一种自适应特征传输机制(AFTM)来提高梯度传播和特征学习的性能。第三,根据信道相似度进行选择性域自适应,有效解决了域漂移问题,提高了电池健康估计的性能。实验结果表明,SDANet在各种工况下都具有良好的电池健康监测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信