Measuring the Sampling Robustness of Complex Networks

K. Areekijseree, S. Soundarajan
{"title":"Measuring the Sampling Robustness of Complex Networks","authors":"K. Areekijseree, S. Soundarajan","doi":"10.1145/3341161.3342873","DOIUrl":null,"url":null,"abstract":"When studying a network, it is often of interest to understand the robustness of that network to noise. Network robustness has been studied in a variety of contexts, examining network properties such as the number of connected components and the lengths of shortest paths. In this work, we present a new network robustness measure, which we refer to as ‘sampling robustness'. The goal of the sampling robustness measure is to quantify the extent to which a network sample collected from a graph with errors is a good representation of a network sample collected from that same graph, but without errors. These errors may be introduced by humans or by the system (e.g., mistakes from the respondents or a bug in an API program), and may affect the performance of a data collection algorithm and the quality of the obtained sample. Thus, when data analysts analyze the sampled network, they may wish to know whether such errors will affect future analysis results. We demonstrate that sampling robustness is dependent on a few easily-computed properties of the network: the leading eigenvalue, average node degree and clustering coefficient. In addition, we introduce regression models for estimating sampling robustness given an obtained sample. As a result, our models can estimate the sampling robustness with MSE < 0.0015 and the model has an R-squared of up to 75%.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3342873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

When studying a network, it is often of interest to understand the robustness of that network to noise. Network robustness has been studied in a variety of contexts, examining network properties such as the number of connected components and the lengths of shortest paths. In this work, we present a new network robustness measure, which we refer to as ‘sampling robustness'. The goal of the sampling robustness measure is to quantify the extent to which a network sample collected from a graph with errors is a good representation of a network sample collected from that same graph, but without errors. These errors may be introduced by humans or by the system (e.g., mistakes from the respondents or a bug in an API program), and may affect the performance of a data collection algorithm and the quality of the obtained sample. Thus, when data analysts analyze the sampled network, they may wish to know whether such errors will affect future analysis results. We demonstrate that sampling robustness is dependent on a few easily-computed properties of the network: the leading eigenvalue, average node degree and clustering coefficient. In addition, we introduce regression models for estimating sampling robustness given an obtained sample. As a result, our models can estimate the sampling robustness with MSE < 0.0015 and the model has an R-squared of up to 75%.
测量复杂网络的采样鲁棒性
在研究一个网络时,了解该网络对噪声的鲁棒性通常是一个有趣的问题。网络鲁棒性已经在各种情况下进行了研究,检查了网络属性,如连接组件的数量和最短路径的长度。在这项工作中,我们提出了一种新的网络鲁棒性度量,我们称之为“抽样鲁棒性”。采样鲁棒性度量的目标是量化从带有错误的图中收集的网络样本是否能够很好地表示从同一图中收集的没有错误的网络样本。这些错误可能是由人为或系统引入的(例如,受访者的错误或API程序中的错误),并可能影响数据收集算法的性能和所获得样本的质量。因此,当数据分析人员分析采样网络时,他们可能希望知道这些错误是否会影响未来的分析结果。我们证明了采样鲁棒性依赖于网络的几个易于计算的属性:主要特征值、平均节点度和聚类系数。此外,我们引入回归模型来估计给定样本的抽样稳健性。因此,我们的模型可以估计抽样稳健性,MSE < 0.0015,模型的r平方高达75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信