{"title":"Bag of morphological words for content-based geographical retrieval","authors":"E. Aptoula","doi":"10.1109/CBMI.2014.6849837","DOIUrl":null,"url":null,"abstract":"Placed in the context of geographical content-based image retrieval, in this paper we explore the description potential of morphological texture descriptors when combined with the popular bag-of-visual-words paradigm. In particular, we adapt existing global morphological texture descriptors, so that they are computed within local sub-windows and then form a vocabulary of “visual morphological words” through clustering. The resulting image features, are thus visual word histograms and are evaluated using the UC Merced Land Use-Land Cover dataset. Moreover, the local approach under study is compared against alternative global and local descriptors across a variety of settings. Despite being one of the initial attempts at localized morphological content description, the retrieval scores indicate that vocabulary based morphological content description possesses a significant discriminatory potential.","PeriodicalId":103056,"journal":{"name":"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2014.6849837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Placed in the context of geographical content-based image retrieval, in this paper we explore the description potential of morphological texture descriptors when combined with the popular bag-of-visual-words paradigm. In particular, we adapt existing global morphological texture descriptors, so that they are computed within local sub-windows and then form a vocabulary of “visual morphological words” through clustering. The resulting image features, are thus visual word histograms and are evaluated using the UC Merced Land Use-Land Cover dataset. Moreover, the local approach under study is compared against alternative global and local descriptors across a variety of settings. Despite being one of the initial attempts at localized morphological content description, the retrieval scores indicate that vocabulary based morphological content description possesses a significant discriminatory potential.