POC: Paphiopedilum Orchid Classifier

Sujitra Arwatchananukul, Phasit Charoenkwan, Dan Xu
{"title":"POC: Paphiopedilum Orchid Classifier","authors":"Sujitra Arwatchananukul, Phasit Charoenkwan, Dan Xu","doi":"10.1109/ICCI-CC.2015.7259387","DOIUrl":null,"url":null,"abstract":"Paphiopedilum Orchid Flowers (POF) are colorful wildflowers and also endangered plants since they bloom only one time per year. There are many species with a similar appearance, which makes it difficult and laborious to classify. Thus, we propose a novel Paphiopedilum Orchid Classifier (POC) based on Neural Network, utilizing the Color and Segmentation-based Fractal Texture Analysis (SFTA) features. In the classification of 11 POF species, POC achieved 97.64% of 10-fold cross validation accuracy. Besides, we also propose a new POF dataset consisting of 100 samples for each species and illustrated the prediction performance of several renowned classifiers such as Naïve Bayes, K-nearest and Decision Tree. According to research result, we hope that POC can assists botanists to classify POF for further breed selection and adaptation.","PeriodicalId":328695,"journal":{"name":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2015.7259387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Paphiopedilum Orchid Flowers (POF) are colorful wildflowers and also endangered plants since they bloom only one time per year. There are many species with a similar appearance, which makes it difficult and laborious to classify. Thus, we propose a novel Paphiopedilum Orchid Classifier (POC) based on Neural Network, utilizing the Color and Segmentation-based Fractal Texture Analysis (SFTA) features. In the classification of 11 POF species, POC achieved 97.64% of 10-fold cross validation accuracy. Besides, we also propose a new POF dataset consisting of 100 samples for each species and illustrated the prediction performance of several renowned classifiers such as Naïve Bayes, K-nearest and Decision Tree. According to research result, we hope that POC can assists botanists to classify POF for further breed selection and adaptation.
POC:兰花分类器
兰花(POF)是五颜六色的野花,也是濒危植物,因为它们一年只开一次花。有许多物种具有相似的外观,这使得分类变得困难和费力。为此,我们提出了一种新的基于神经网络的兰花分类器(POC),该分类器利用了基于颜色和分割的分形纹理分析(SFTA)特征。在11种POF的分类中,POC达到了97.64%的10倍交叉验证准确率。此外,我们还提出了一个由每个物种100个样本组成的新的POF数据集,并举例说明了几种著名分类器(Naïve Bayes, K-nearest和Decision Tree)的预测性能。根据研究结果,我们希望POC能够帮助植物学家对POF进行分类,以便进行进一步的品种选择和适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信