Instrumental variable estimation of a spatial dynamic panel model with endogenous spatial weights when T is small

IF 2.9 4区 经济学 Q1 ECONOMICS
Xi Qu, Xiaoliang Wang, Lung-fei Lee
{"title":"Instrumental variable estimation of a spatial dynamic panel model with endogenous spatial weights when T is small","authors":"Xi Qu,&nbsp;Xiaoliang Wang,&nbsp;Lung-fei Lee","doi":"10.1111/ectj.12069","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The spatial dynamic panel data (SDPD) model is a standard tool for analysing data with both spatial correlation and dynamic dependences among economic units. Conventional estimation methods rely on the key assumption that the spatial weight matrix is exogenous, which would likely be violated in some empirical applications where spatial weights are determined by economic factors. In this paper, we propose an SDPD model with individual fixed effects in a short time dimension, where the spatial weights can be endogenous and time-varying. We establish the consistency and asymptotic normality of the two-stage instrumental variable (2SIV) estimator and we investigate its finite sample properties using a Monte Carlo simulation. When applying this model to study government expenditures in China, we find strong evidence of spatial correlation and time dependence in making spending decisions among China's provincial governments.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12069","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12069","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 23

Abstract

The spatial dynamic panel data (SDPD) model is a standard tool for analysing data with both spatial correlation and dynamic dependences among economic units. Conventional estimation methods rely on the key assumption that the spatial weight matrix is exogenous, which would likely be violated in some empirical applications where spatial weights are determined by economic factors. In this paper, we propose an SDPD model with individual fixed effects in a short time dimension, where the spatial weights can be endogenous and time-varying. We establish the consistency and asymptotic normality of the two-stage instrumental variable (2SIV) estimator and we investigate its finite sample properties using a Monte Carlo simulation. When applying this model to study government expenditures in China, we find strong evidence of spatial correlation and time dependence in making spending decisions among China's provincial governments.

T较小时具有内生空间权值的空间动态面板模型的工具变量估计
空间动态面板数据(SDPD)模型是分析经济单位间既有空间相关性又有动态依赖性的数据的标准工具。传统的估计方法依赖于一个关键假设,即空间权重矩阵是外生的,在一些经验应用中,空间权重是由经济因素决定的,这可能会被违反。在本文中,我们提出了一个具有个体固定效应的短时间维度SDPD模型,其中空间权重可以是内生的和时变的。我们建立了两阶段工具变量(2SIV)估计量的一致性和渐近正态性,并利用蒙特卡罗模拟研究了它的有限样本性质。将此模型应用于中国的政府支出研究中,我们发现中国省级政府的支出决策具有很强的空间相关性和时间依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信