G. Wu, K. Khoo, M. Jhon, H. Meng, S. Lua, R. Sbiaa, C. Gan
{"title":"First-principles calculations of the magnetic anisotropic constants of Co–Pd multilayers: Effect of stacking faults","authors":"G. Wu, K. Khoo, M. Jhon, H. Meng, S. Lua, R. Sbiaa, C. Gan","doi":"10.1209/0295-5075/99/17001","DOIUrl":null,"url":null,"abstract":"Using first-principles density functional theory calculations with spin-orbit coupling, we systematically investigate the magnetic anisotropic energy (MAE) of ConPdm (n+m=5) magnetic multilayers. We consider the influences of the relative atomic weight of Co, wCo, stacking fault, and external stress on the MAE. We find that out-of-plane lattice constant, saturation magnetization, and magnetic moments are almost linearly correlated with wCo. The magnetic anisotropic constant (MAC) curve of ConPdm without stacking fault shows a near-linear dependence on wCo that agrees with our derived effective MAC Kueff which includes shape, magneto-crystalline, and magneto-elastic contributions. We also show that the contributions from Pd layers to both the total magnetic moments and magnetic anisotropy are significant. The stress anisotropy due to the substrate has a weak effect on the MAC. However the stacking fault has a strong effect on the MAC. When the Co layer is thin, a Co–Pd interface without stacking fault is necessary for higher Kueff. However, when the Co layer is thick, creating stacking faults inside the Co region may produce a larger Kueff. Our study suggests the ways to increase the perpendicular magnetic anisotropy in Co–Pd multilayer systems and subsequently leads to the development of novel magnetic recording devices.","PeriodicalId":171520,"journal":{"name":"EPL (Europhysics Letters)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL (Europhysics Letters)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/99/17001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Using first-principles density functional theory calculations with spin-orbit coupling, we systematically investigate the magnetic anisotropic energy (MAE) of ConPdm (n+m=5) magnetic multilayers. We consider the influences of the relative atomic weight of Co, wCo, stacking fault, and external stress on the MAE. We find that out-of-plane lattice constant, saturation magnetization, and magnetic moments are almost linearly correlated with wCo. The magnetic anisotropic constant (MAC) curve of ConPdm without stacking fault shows a near-linear dependence on wCo that agrees with our derived effective MAC Kueff which includes shape, magneto-crystalline, and magneto-elastic contributions. We also show that the contributions from Pd layers to both the total magnetic moments and magnetic anisotropy are significant. The stress anisotropy due to the substrate has a weak effect on the MAC. However the stacking fault has a strong effect on the MAC. When the Co layer is thin, a Co–Pd interface without stacking fault is necessary for higher Kueff. However, when the Co layer is thick, creating stacking faults inside the Co region may produce a larger Kueff. Our study suggests the ways to increase the perpendicular magnetic anisotropy in Co–Pd multilayer systems and subsequently leads to the development of novel magnetic recording devices.