{"title":"Environmental Impact of Information and Communication Equipment for Future Smart Grids","authors":"Vedad Mujan, S. Aleksic","doi":"10.5772/intechopen.88515","DOIUrl":null,"url":null,"abstract":"The realization of the smart grid will require a deployment of additional information and communication technology (ICT) equipment in various domains but mostly the customer and distribution domains. All of these ICT equipment will unavoidably lead to an increase in electricity consumption and consequently to increased environmental sustainability issues and thus an overall environmental sustainability analysis if the future smart grid has to be performed. In order to obtain a meaningful environmental sustainability analysis, additionally to the operation phase, various other ICT equipment life cycle stages, i.e., raw material extraction and processing, manufacturing and assembly, recycling and disposal, as well as transportation, have to be included in the assessment as well. This chapter addresses the environmental sustainability of ICT equipment for smart grids involved in the advanced metering infrastructure (AMI) and home area network (HAN) smart grid applications. The environmental sustainability is analyzed by means of the exergybased life cycle assessment (E-LCA) that is based on the second law of thermodynamics and takes the entire lifetime of ICT equipment into consideration. Some selected results of the E-LCA study are briefly presented and discussed. They have shown that the environmental impact of the additional ICT equipment cannot be neglected and has to be taken into account when assessing the environmental overall sustainability of smart grids.","PeriodicalId":238020,"journal":{"name":"Advanced Communication and Control Methods for Future Smartgrids","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Communication and Control Methods for Future Smartgrids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.88515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The realization of the smart grid will require a deployment of additional information and communication technology (ICT) equipment in various domains but mostly the customer and distribution domains. All of these ICT equipment will unavoidably lead to an increase in electricity consumption and consequently to increased environmental sustainability issues and thus an overall environmental sustainability analysis if the future smart grid has to be performed. In order to obtain a meaningful environmental sustainability analysis, additionally to the operation phase, various other ICT equipment life cycle stages, i.e., raw material extraction and processing, manufacturing and assembly, recycling and disposal, as well as transportation, have to be included in the assessment as well. This chapter addresses the environmental sustainability of ICT equipment for smart grids involved in the advanced metering infrastructure (AMI) and home area network (HAN) smart grid applications. The environmental sustainability is analyzed by means of the exergybased life cycle assessment (E-LCA) that is based on the second law of thermodynamics and takes the entire lifetime of ICT equipment into consideration. Some selected results of the E-LCA study are briefly presented and discussed. They have shown that the environmental impact of the additional ICT equipment cannot be neglected and has to be taken into account when assessing the environmental overall sustainability of smart grids.