Fairness of Machine Learning Algorithms for the Black Community

S. M. A. Kiemde, A. Kora
{"title":"Fairness of Machine Learning Algorithms for the Black Community","authors":"S. M. A. Kiemde, A. Kora","doi":"10.1109/ISTAS50296.2020.9462194","DOIUrl":null,"url":null,"abstract":"This paper seeks to study the limits of the definitions of algorithmic fairness in relation to a protected variable, namely skin color. Discrimination towards the black community have existed for a long time. ML algorithms have only amplified or revealed existing discrimination. AI is a mirror that reflects the reality of our societies. The lack of a universal definition of algorithmic fairness makes it difficult to detect cases of discrimination in machine learning algorithms. We believe that independent or sensitive variables such as skin color are benchmarks that could be used to decide whether or not a decision is fair. We also recommend avoiding the use of proxy data.","PeriodicalId":196560,"journal":{"name":"2020 IEEE International Symposium on Technology and Society (ISTAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Technology and Society (ISTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTAS50296.2020.9462194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper seeks to study the limits of the definitions of algorithmic fairness in relation to a protected variable, namely skin color. Discrimination towards the black community have existed for a long time. ML algorithms have only amplified or revealed existing discrimination. AI is a mirror that reflects the reality of our societies. The lack of a universal definition of algorithmic fairness makes it difficult to detect cases of discrimination in machine learning algorithms. We believe that independent or sensitive variables such as skin color are benchmarks that could be used to decide whether or not a decision is fair. We also recommend avoiding the use of proxy data.
机器学习算法对黑人社区的公平性
本文试图研究与受保护变量(即肤色)相关的算法公平性定义的局限性。对黑人的歧视由来已久。ML算法只是放大或揭示了现有的歧视。人工智能是一面反映我们社会现实的镜子。由于缺乏对算法公平性的通用定义,很难发现机器学习算法中的歧视案例。我们认为,独立或敏感的变量,如肤色,是可以用来决定一个决定是否公平的基准。我们还建议避免使用代理数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信