Wavelet regularization in parallel imaging

Amel Korti, A. Bessaid
{"title":"Wavelet regularization in parallel imaging","authors":"Amel Korti, A. Bessaid","doi":"10.1109/ATSIP.2017.8075526","DOIUrl":null,"url":null,"abstract":"Both Compressed Sensing (CS) and parallel MRI (pMRI) techniques can accelerate MRI scans; the CS method by reducing the acquired dataset sizes and the pMRI method by acquiring simultaneously undersampled k-space data. In this paper, we relate CS to accelerated parallel imaging reconstruction. Medical images can have a sparser representation in a wavelet domain. We study in the first, the effect of various wavelet types on the reconstructions and we show then the performance of the CS-pMRI method using more advanced techniques L1-wavelet regularization to suppress noise in the reconstruction, in comparison with CS and pMRI methods.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Both Compressed Sensing (CS) and parallel MRI (pMRI) techniques can accelerate MRI scans; the CS method by reducing the acquired dataset sizes and the pMRI method by acquiring simultaneously undersampled k-space data. In this paper, we relate CS to accelerated parallel imaging reconstruction. Medical images can have a sparser representation in a wavelet domain. We study in the first, the effect of various wavelet types on the reconstructions and we show then the performance of the CS-pMRI method using more advanced techniques L1-wavelet regularization to suppress noise in the reconstruction, in comparison with CS and pMRI methods.
并行成像中的小波正则化
压缩感知(CS)和并行MRI (pMRI)技术都可以加速MRI扫描;CS方法通过减少获取的数据集大小,pMRI方法通过同时获取欠采样k空间数据。在本文中,我们将CS与加速并行成像重建联系起来。医学图像在小波域中具有更稀疏的表示。首先,我们研究了不同小波类型对重建的影响,然后我们展示了CS-pMRI方法与CS和pMRI方法相比,使用更先进的l1 -小波正则化技术来抑制重建中的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信