Maximum significance clustering of oligonucleotide microarrays

D. Ridder, M. Reinders, F. Staal, J. Dongen
{"title":"Maximum significance clustering of oligonucleotide microarrays","authors":"D. Ridder, M. Reinders, F. Staal, J. Dongen","doi":"10.1109/CSBW.2005.91","DOIUrl":null,"url":null,"abstract":"Affymetrix high-density oligonucleotide microarrays measure expression of DNA transcripts using probe sets, i.e. multiple probes per transcript. Usually, these multiple measurements are transformed into a single probeset expression level before data analysis proceeds; any information on variability is lost. In this work we demonstrate how individual probe measurements can be used in a statistic for differential expression. Furthermore, we show how this statistic can serve as a clustering criterion. A novel clustering algorithm using this maximum significance criterion is demonstrated to be more efficient with the measured data than competing techniques for dealing with repeated measurements, especially when the sample size is small.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Affymetrix high-density oligonucleotide microarrays measure expression of DNA transcripts using probe sets, i.e. multiple probes per transcript. Usually, these multiple measurements are transformed into a single probeset expression level before data analysis proceeds; any information on variability is lost. In this work we demonstrate how individual probe measurements can be used in a statistic for differential expression. Furthermore, we show how this statistic can serve as a clustering criterion. A novel clustering algorithm using this maximum significance criterion is demonstrated to be more efficient with the measured data than competing techniques for dealing with repeated measurements, especially when the sample size is small.
寡核苷酸微阵列的最大显著聚类
Affymetrix高密度寡核苷酸微阵列使用探针组测量DNA转录本的表达,即每个转录本多个探针。通常,在进行数据分析之前,将这些多个测量值转换为单个问题集表达水平;任何关于可变性的信息都会丢失。在这项工作中,我们展示了如何在差分表达的统计中使用单个探针测量。此外,我们还展示了该统计数据如何作为聚类标准。使用该最大显著性准则的新型聚类算法在处理重复测量数据时比竞争技术更有效,特别是在样本量较小的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信