Energy-Optimal Sampling for Edge Computing Feedback Systems: Aperiodic Case

Vishnu Narayanan Moothedath
{"title":"Energy-Optimal Sampling for Edge Computing Feedback Systems: Aperiodic Case","authors":"Vishnu Narayanan Moothedath","doi":"10.1109/SEC54971.2022.00047","DOIUrl":null,"url":null,"abstract":"We study the problem of optimal sampling in an edge-based video analytics system (VAS), where sensor samples collected at a terminal device are offloaded to a back-end server that processes them and generates feedback for a user. Sampling the system with the maximum allowed frequency results in the timely detection of relevant events with minimum delay. However, it incurs high energy costs and causes unnecessary usage of network and compute resources via communication and processing of redundant samples. On the other hand, an infrequent sampling result in a higher delay in detecting the relevant event, thus increasing the idle energy usage and degrading the quality of experience in terms of responsiveness of the system. We quantify this sampling frequency trade-off as a weighted function between the number of samples and the responsiveness. We propose an energy-optimal aperiodic sampling policy that improves over the state-of-the-art optimal periodic sampling policy. Numerically, we show the proposed policy provides a consistent improvement of more than 10% over the state-of-the-art.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the problem of optimal sampling in an edge-based video analytics system (VAS), where sensor samples collected at a terminal device are offloaded to a back-end server that processes them and generates feedback for a user. Sampling the system with the maximum allowed frequency results in the timely detection of relevant events with minimum delay. However, it incurs high energy costs and causes unnecessary usage of network and compute resources via communication and processing of redundant samples. On the other hand, an infrequent sampling result in a higher delay in detecting the relevant event, thus increasing the idle energy usage and degrading the quality of experience in terms of responsiveness of the system. We quantify this sampling frequency trade-off as a weighted function between the number of samples and the responsiveness. We propose an energy-optimal aperiodic sampling policy that improves over the state-of-the-art optimal periodic sampling policy. Numerically, we show the proposed policy provides a consistent improvement of more than 10% over the state-of-the-art.
边缘计算反馈系统的能量最优采样:非周期情况
我们研究了基于边缘的视频分析系统(VAS)中的最佳采样问题,其中在终端设备上收集的传感器样本被卸载到后端服务器上,后端服务器处理它们并为用户生成反馈。以允许的最大频率对系统进行采样,可以以最小的延迟及时检测相关事件。但是,由于冗余样本的通信和处理,会造成较高的能量成本和不必要的网络和计算资源的使用。另一方面,不频繁的采样会导致检测相关事件的更高延迟,从而增加空闲能量的使用,并降低系统响应性方面的体验质量。我们将这种采样频率权衡量化为样本数量和响应性之间的加权函数。我们提出了一种能量最优的非周期采样策略,它改进了最优周期采样策略。从数字上看,我们表明所提议的政策比最先进的政策提供了超过10%的持续改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信