Feature and keypoint selection for visible to near-infrared face matching

Soumyadeep Ghosh, Tejas I. Dhamecha, Rohit Keshari, Richa Singh, Mayank Vatsa
{"title":"Feature and keypoint selection for visible to near-infrared face matching","authors":"Soumyadeep Ghosh, Tejas I. Dhamecha, Rohit Keshari, Richa Singh, Mayank Vatsa","doi":"10.1109/BTAS.2015.7358760","DOIUrl":null,"url":null,"abstract":"Matching near-infrared to visible images is one of the heterogeneous face recognition challenges in which spectral variations cause changes in the appearance of face images. In this paper, we propose to utilize a keypoint selection approach in the recognition pipeline. The proposed keypoint selection approach is a fast approximation of feature selection approach, yielding two orders of magnitude improvement in computational time while maintaining the recognition performance with respect to feature selection. The keypoint selection approach also enables to visualize the keypoints that are important for recognition. The proposed matching framework yields state-of-the-art approaches results on CASIA NIR-VIS-2.0 dataset.","PeriodicalId":404972,"journal":{"name":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2015.7358760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Matching near-infrared to visible images is one of the heterogeneous face recognition challenges in which spectral variations cause changes in the appearance of face images. In this paper, we propose to utilize a keypoint selection approach in the recognition pipeline. The proposed keypoint selection approach is a fast approximation of feature selection approach, yielding two orders of magnitude improvement in computational time while maintaining the recognition performance with respect to feature selection. The keypoint selection approach also enables to visualize the keypoints that are important for recognition. The proposed matching framework yields state-of-the-art approaches results on CASIA NIR-VIS-2.0 dataset.
可见光到近红外人脸匹配的特征和关键点选择
近红外图像与可见光图像的匹配是异构人脸识别的挑战之一,其中光谱变化会导致人脸图像外观的变化。在本文中,我们建议在识别管道中使用关键点选择方法。提出的关键点选择方法是特征选择方法的快速逼近,在保持特征选择的识别性能的同时,计算时间提高了两个数量级。关键点选择方法还可以将对识别很重要的关键点可视化。提出的匹配框架在CASIA NIR-VIS-2.0数据集上产生了最先进的方法结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信