Schroedinger Eigenmaps for Dimensionality Reduction and Image Classification

Guoming Chen
{"title":"Schroedinger Eigenmaps for Dimensionality Reduction and Image Classification","authors":"Guoming Chen","doi":"10.1109/CISP-BMEI51763.2020.9263518","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Schroedinger Eigenmaps (SE) manifold learning and dimensionality reduction method on glaucoma image classification. The visualization of binary image recognition three dimensional electronic cloud image on the retinal fundus dataset shows that after quantum circuit diagram transformation, the recognition performance of the image data in the Schroedinger Eigenmaps (SE) manifold learning dimensionality reduction spatial distribution has been significantly improved for binary image classification.","PeriodicalId":346757,"journal":{"name":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"63 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI51763.2020.9263518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a Schroedinger Eigenmaps (SE) manifold learning and dimensionality reduction method on glaucoma image classification. The visualization of binary image recognition three dimensional electronic cloud image on the retinal fundus dataset shows that after quantum circuit diagram transformation, the recognition performance of the image data in the Schroedinger Eigenmaps (SE) manifold learning dimensionality reduction spatial distribution has been significantly improved for binary image classification.
用于降维和图像分类的薛定谔特征映射
本文提出了一种基于薛定谔特征映射(SE)流形学习和降维的青光眼图像分类方法。二值图像识别三维电子云图在视网膜眼底数据集上的可视化表明,经过量子电路图变换后,图像数据在薛定谔特征映射(SE)流形学习降维空间分布下的识别性能得到了显著提高,用于二值图像分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信