Uniformly Most Powerful CFAR Test for Pareto-Target Detection in Pareto Distributed Clutter

J. Gali, P. Ray, G. Das
{"title":"Uniformly Most Powerful CFAR Test for Pareto-Target Detection in Pareto Distributed Clutter","authors":"J. Gali, P. Ray, G. Das","doi":"10.1109/NCC48643.2020.9056098","DOIUrl":null,"url":null,"abstract":"In the Radar context, Pareto distribution has been validated for both sea clutter and aircraft target under specific scenarios. Primarily, after the sea clutter is modeled as Pareto, some heuristic constant-false-alarm-rate (CFAR) processors appeared in the literature with the same form of adaptive thresholding that is derived for conventional exponential vs. exponential hypothesis testing (i.e., for detecting Swerling-I target in exponentially distributed clutter). Statistical procedures obtained under such idealistic assumptions cease to be optimal when applied to newer models esp. heavy tail distributions like Pareto. So, even to accommodate a wide range of application scenarios, in addition to Pareto modeled aircraft detection, we solve for heavy tail in Pareto vs. Pareto distributed lots from the composite hypothesis testing framework. Here, we derive the uniformly most powerful (UMP) test that complies CFAR property with-respect to the tail-index, using the least favorable density (lfd) concept. We further validate this CFAR property from extensive simulation results, and attribute that the geometric mean (GM)-CFAR is the optimal test in UMP sense.","PeriodicalId":183772,"journal":{"name":"2020 National Conference on Communications (NCC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC48643.2020.9056098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the Radar context, Pareto distribution has been validated for both sea clutter and aircraft target under specific scenarios. Primarily, after the sea clutter is modeled as Pareto, some heuristic constant-false-alarm-rate (CFAR) processors appeared in the literature with the same form of adaptive thresholding that is derived for conventional exponential vs. exponential hypothesis testing (i.e., for detecting Swerling-I target in exponentially distributed clutter). Statistical procedures obtained under such idealistic assumptions cease to be optimal when applied to newer models esp. heavy tail distributions like Pareto. So, even to accommodate a wide range of application scenarios, in addition to Pareto modeled aircraft detection, we solve for heavy tail in Pareto vs. Pareto distributed lots from the composite hypothesis testing framework. Here, we derive the uniformly most powerful (UMP) test that complies CFAR property with-respect to the tail-index, using the least favorable density (lfd) concept. We further validate this CFAR property from extensive simulation results, and attribute that the geometric mean (GM)-CFAR is the optimal test in UMP sense.
Pareto分布杂波中Pareto目标检测的一致最强大CFAR检验
在雷达环境下,对海杂波和飞机目标在特定场景下的Pareto分布进行了验证。首先,在将海杂波建模为帕累托模型之后,文献中出现了一些启发式恒定误报率(CFAR)处理器,其自适应阈值形式与传统指数与指数假设检验(即用于检测指数分布杂波中的转向目标)相同。在这种理想假设下获得的统计过程,在应用于较新的模型时,尤其是像帕累托这样的重尾分布,就不再是最优的了。因此,为了适应广泛的应用场景,除了Pareto模型飞机检测之外,我们还从复合假设检验框架中解决了Pareto与Pareto分布批次中的重尾问题。在这里,我们使用最不有利密度(lfd)概念推导出符合尾部指数的CFAR特性的一致最强大(UMP)测试。我们通过大量的仿真结果进一步验证了CFAR的特性,并认为几何平均(GM)-CFAR是UMP意义上的最优测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信