Optimal battery chemistry, capacity selection, charge/discharge schedule, and lifetime of energy storage under time-of-use pricing

A. Barnes, J. Balda, Scott O. Geurin, A. Escobar-Mejía
{"title":"Optimal battery chemistry, capacity selection, charge/discharge schedule, and lifetime of energy storage under time-of-use pricing","authors":"A. Barnes, J. Balda, Scott O. Geurin, A. Escobar-Mejía","doi":"10.1109/ISGTEurope.2011.6162702","DOIUrl":null,"url":null,"abstract":"Energy storage units (ESU) can reduce the cost of purchased electricity under time-of-use (TOU) pricing. To maximize the cost reduction, the chemistries, capacities, and charge/discharge schedules of the batteries used in the ESU must be selected appropriately. The batteries must have sufficient capacities to supply the energy demanded by the charge/discharge profiles and to meet the project lifetime. The ESU responds to a TOU price structure. The ESU output power is limited by the rating of the power electronic interface. The cost of the ESU is assumed to increase linearly with battery capacity. A method using linear optimization is developed that determines the battery chemistries, capacities, and charge/discharge schedules simultaneously. The method shows that the Li-Ion battery chemistry is the most cost effective technology due to its high efficiency and that an 11-year project lifetime is most profitable.","PeriodicalId":419250,"journal":{"name":"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2011.6162702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Energy storage units (ESU) can reduce the cost of purchased electricity under time-of-use (TOU) pricing. To maximize the cost reduction, the chemistries, capacities, and charge/discharge schedules of the batteries used in the ESU must be selected appropriately. The batteries must have sufficient capacities to supply the energy demanded by the charge/discharge profiles and to meet the project lifetime. The ESU responds to a TOU price structure. The ESU output power is limited by the rating of the power electronic interface. The cost of the ESU is assumed to increase linearly with battery capacity. A method using linear optimization is developed that determines the battery chemistries, capacities, and charge/discharge schedules simultaneously. The method shows that the Li-Ion battery chemistry is the most cost effective technology due to its high efficiency and that an 11-year project lifetime is most profitable.
优化电池化学,容量选择,充电/放电计划,以及在使用时间定价下的储能寿命
储能单元(ESU)可以降低分时电价(TOU)下的购电成本。为了最大限度地降低成本,必须适当选择ESU中使用的电池的化学成分、容量和充放电时间表。电池必须有足够的容量来提供充电/放电配置文件所需的能量,并满足项目的使用寿命。ESU对分时电价结构作出反应。ESU的输出功率受电力电子接口额定值的限制。假设ESU的成本随电池容量线性增加。开发了一种线性优化方法,可以同时确定电池的化学成分、容量和充放电时间表。该方法表明,锂离子电池化学技术由于其高效率是最具成本效益的技术,并且11年的项目寿命是最有利可图的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信