Associative morphological memories for endmember determination in spectral unmixing

M. Graña, P. Sussner, G. Ritter
{"title":"Associative morphological memories for endmember determination in spectral unmixing","authors":"M. Graña, P. Sussner, G. Ritter","doi":"10.1109/FUZZ.2003.1206616","DOIUrl":null,"url":null,"abstract":"Autoassociative morphological memories (AMM) are a construct similar to hopfield autoassociatived memories defined on the (R, +, v, /spl and/) lattice algebra. Unlimited storage and perfect recall of noiseless real valued patterns has been proved for AMMs. However AMMs suffer from sensitivity to specific noise models, that can be characterized as erosive and dilative noise. On the other hand, spectral unmixing of hyperspectral images needs the prior definition of a set of endmembers, which correspond to material spectra lying on vertices of the minimum convex region covering the image data. These vertices can be characterized as morphologically independent patterns. We present a procedure based on the AMM noise sensitivity for endmember detection based on this characterization.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1206616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Autoassociative morphological memories (AMM) are a construct similar to hopfield autoassociatived memories defined on the (R, +, v, /spl and/) lattice algebra. Unlimited storage and perfect recall of noiseless real valued patterns has been proved for AMMs. However AMMs suffer from sensitivity to specific noise models, that can be characterized as erosive and dilative noise. On the other hand, spectral unmixing of hyperspectral images needs the prior definition of a set of endmembers, which correspond to material spectra lying on vertices of the minimum convex region covering the image data. These vertices can be characterized as morphologically independent patterns. We present a procedure based on the AMM noise sensitivity for endmember detection based on this characterization.
光谱分解中端元测定的联想形态记忆
自联想形态记忆(AMM)是一种类似于hopfield自联想记忆的结构,定义在(R, +, v, /spl和/)格代数上。证明了无噪声实值模式的无限存储和完美召回。然而,amm对特定的噪声模型具有敏感性,其特征为侵蚀性和扩张性噪声。另一方面,高光谱图像的光谱解混需要预先定义一组端元,这些端元对应于覆盖图像数据的最小凸区域顶点上的物质光谱。这些顶点可以被描述为形态独立的模式。我们提出了一种基于AMM噪声灵敏度的端元检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信