A comparison of machine learning techniques for phishing detection

Saeed Abu-Nimeh, D. Nappa, Xinlei Wang, S. Nair
{"title":"A comparison of machine learning techniques for phishing detection","authors":"Saeed Abu-Nimeh, D. Nappa, Xinlei Wang, S. Nair","doi":"10.1145/1299015.1299021","DOIUrl":null,"url":null,"abstract":"There are many applications available for phishing detection. However, unlike predicting spam, there are only few studies that compare machine learning techniques in predicting phishing. The present study compares the predictive accuracy of several machine learning methods including Logistic Regression (LR), Classification and Regression Trees (CART), Bayesian Additive Regression Trees (BART), Support Vector Machines (SVM), Random Forests (RF), and Neural Networks (NNet) for predicting phishing emails. A data set of 2889 phishing and legitimate emails is used in the comparative study. In addition, 43 features are used to train and test the classifiers.","PeriodicalId":130252,"journal":{"name":"APWG Symposium on Electronic Crime Research","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"426","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APWG Symposium on Electronic Crime Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1299015.1299021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 426

Abstract

There are many applications available for phishing detection. However, unlike predicting spam, there are only few studies that compare machine learning techniques in predicting phishing. The present study compares the predictive accuracy of several machine learning methods including Logistic Regression (LR), Classification and Regression Trees (CART), Bayesian Additive Regression Trees (BART), Support Vector Machines (SVM), Random Forests (RF), and Neural Networks (NNet) for predicting phishing emails. A data set of 2889 phishing and legitimate emails is used in the comparative study. In addition, 43 features are used to train and test the classifiers.
网络钓鱼检测的机器学习技术比较
有许多可用于网络钓鱼检测的应用程序。然而,与预测垃圾邮件不同的是,只有很少的研究将机器学习技术用于预测网络钓鱼。本研究比较了几种机器学习方法的预测准确性,包括逻辑回归(LR)、分类与回归树(CART)、贝叶斯加性回归树(BART)、支持向量机(SVM)、随机森林(RF)和神经网络(NNet),用于预测网络钓鱼邮件。以2889封钓鱼邮件和合法邮件为数据集进行对比研究。此外,还使用了43个特征来训练和测试分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信