Multi-task BERT for Aspect-based Sentiment Analysis

Yuqi Wang, Qi Chen, Wen Wang
{"title":"Multi-task BERT for Aspect-based Sentiment Analysis","authors":"Yuqi Wang, Qi Chen, Wen Wang","doi":"10.1109/SMARTCOMP52413.2021.00077","DOIUrl":null,"url":null,"abstract":"Social media data are increasingly used for smart computing applications, e.g., social event detection and sentiment analysis. Sentiment analysis, an important natural language processing task, has been applied in many real-world applications such as recommender systems and intelligence business systems. To process such social media data, natural language processing techniques such as BERT can be applied to extract essential language representations and produce state-of-the-art results. In this paper, we utilize the pre-trained BERT model as the backbone network and propose the BERT-SAN model to perform aspect-based sentiment analysis. The result demonstrates that our proposed model has a significant improvement against other baselines.","PeriodicalId":330785,"journal":{"name":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP52413.2021.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Social media data are increasingly used for smart computing applications, e.g., social event detection and sentiment analysis. Sentiment analysis, an important natural language processing task, has been applied in many real-world applications such as recommender systems and intelligence business systems. To process such social media data, natural language processing techniques such as BERT can be applied to extract essential language representations and produce state-of-the-art results. In this paper, we utilize the pre-trained BERT model as the backbone network and propose the BERT-SAN model to perform aspect-based sentiment analysis. The result demonstrates that our proposed model has a significant improvement against other baselines.
面向面向方面情感分析的多任务BERT
社交媒体数据越来越多地用于智能计算应用,例如社交事件检测和情感分析。情感分析是一项重要的自然语言处理任务,已被应用于许多现实应用中,如推荐系统和智能业务系统。为了处理这样的社交媒体数据,可以应用BERT等自然语言处理技术来提取基本的语言表示并产生最先进的结果。本文利用预训练的BERT模型作为骨干网,提出BERT- san模型进行基于方面的情感分析。结果表明,我们提出的模型与其他基线相比有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信