A Comparison of EEG Preprocessing Methods using Time Delay Neural Networks

R. Rao, R. Derakhshani
{"title":"A Comparison of EEG Preprocessing Methods using Time Delay Neural Networks","authors":"R. Rao, R. Derakhshani","doi":"10.1109/CNE.2005.1419607","DOIUrl":null,"url":null,"abstract":"Multichannel recordings of EEG data during various mental tasks are processed using two popular methods, independent component analysis (ICA) and matching pursuit (MP). The results are fed to a time delay neural network (TDNN) for classification of each mental task. Based on the results of the test sets, we analyzed the effectiveness of ICA and MP methods for use in EEG preprocessing and TDNN classification. It is shown that ICA is more effective than MP in lowering the neural network classification error; however this advantage is not significant","PeriodicalId":113815,"journal":{"name":"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2005.1419607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Multichannel recordings of EEG data during various mental tasks are processed using two popular methods, independent component analysis (ICA) and matching pursuit (MP). The results are fed to a time delay neural network (TDNN) for classification of each mental task. Based on the results of the test sets, we analyzed the effectiveness of ICA and MP methods for use in EEG preprocessing and TDNN classification. It is shown that ICA is more effective than MP in lowering the neural network classification error; however this advantage is not significant
基于时滞神经网络的脑电信号预处理方法比较
采用独立分量分析(ICA)和匹配追踪(MP)两种常用的方法对不同思维任务时的多通道脑电图数据进行处理。结果被输入到一个时滞神经网络(TDNN),用于对每个心理任务进行分类。基于测试集的结果,我们分析了ICA和MP方法在脑电信号预处理和TDNN分类中的有效性。结果表明,ICA比MP更有效地降低了神经网络的分类误差;然而,这种优势并不显著
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信