Inference of gene-regulatory networks using message-passing algorithms

Manohar Shamaiah, Sang Hyun Lee, H. Vikalo
{"title":"Inference of gene-regulatory networks using message-passing algorithms","authors":"Manohar Shamaiah, Sang Hyun Lee, H. Vikalo","doi":"10.1109/GENSIPS.2010.5719683","DOIUrl":null,"url":null,"abstract":"We present an application of message-passing techniques to gene regulatory network inference. The network inference is posed as a constrained linear regression problem, and solved by a distributed computationally efficient message-passing algorithm. Performance of the proposed algorithm is tested on gold standard data sets and evaluated using metrics provided by the DREAM2 challenge [1]. Performance of the proposed algorithm is comparable to that of the techniques which yielded the best results in the DREAM2 challenge competition.","PeriodicalId":388703,"journal":{"name":"2010 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2010.5719683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present an application of message-passing techniques to gene regulatory network inference. The network inference is posed as a constrained linear regression problem, and solved by a distributed computationally efficient message-passing algorithm. Performance of the proposed algorithm is tested on gold standard data sets and evaluated using metrics provided by the DREAM2 challenge [1]. Performance of the proposed algorithm is comparable to that of the techniques which yielded the best results in the DREAM2 challenge competition.
利用信息传递算法推断基因调控网络
我们提出了一种信息传递技术在基因调控网络推断中的应用。将网络推理作为一个有约束的线性回归问题,采用一种计算效率高的分布式消息传递算法进行求解。所提出算法的性能在金标准数据集上进行了测试,并使用DREAM2挑战提供的指标进行了评估[1]。该算法的性能可与DREAM2挑战赛中取得最佳成绩的技术相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信