CURE: Collection for Urdu Information Retrieval Evaluation and Ranking

Muntaha Iqbal, Kamran Amjad, Bilal Tahir, M. Mehmood
{"title":"CURE: Collection for Urdu Information Retrieval Evaluation and Ranking","authors":"Muntaha Iqbal, Kamran Amjad, Bilal Tahir, M. Mehmood","doi":"10.1109/ICoDT252288.2021.9441510","DOIUrl":null,"url":null,"abstract":"Urdu is a widely spoken language with 163 million speakers across the globe. Information Retrieval (IR) for Urdu entails special consideration of research community due to its rich morphological features and a large number of speakers. In general, IR evaluation task is not extensively explored for Urdu. The most important missing element is the availability of a standardized evaluation corpus specific to Urdu. In this research work, we propose and construct a standard test collection of Urdu documents for IR evaluation and named it Collection for Urdu Retrieval Evaluation (CURE). We select 1,096 unique documents against 50 diverse queries from a large collection of 0.5 million crawled documents using two IR models. The purpose of test collection is the evaluation of IR models, ranking algorithms, and different natural language processing techniques. Next, we perform binary relevance judgment on the selected documents. We also build two other language resources for lemmatization and query expansion specific to our test collection. Evaluation of test collection is carried out using four retrieval models as well using the stop-words list, lemmatization, and query expansion. Furthermore, error analysis is performed for each query with different NLP techniques. To the best of our knowledge, this work is the first attempt for preparing a standardized information retrieval evaluation test collection for the Urdu language.","PeriodicalId":207832,"journal":{"name":"2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoDT252288.2021.9441510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Urdu is a widely spoken language with 163 million speakers across the globe. Information Retrieval (IR) for Urdu entails special consideration of research community due to its rich morphological features and a large number of speakers. In general, IR evaluation task is not extensively explored for Urdu. The most important missing element is the availability of a standardized evaluation corpus specific to Urdu. In this research work, we propose and construct a standard test collection of Urdu documents for IR evaluation and named it Collection for Urdu Retrieval Evaluation (CURE). We select 1,096 unique documents against 50 diverse queries from a large collection of 0.5 million crawled documents using two IR models. The purpose of test collection is the evaluation of IR models, ranking algorithms, and different natural language processing techniques. Next, we perform binary relevance judgment on the selected documents. We also build two other language resources for lemmatization and query expansion specific to our test collection. Evaluation of test collection is carried out using four retrieval models as well using the stop-words list, lemmatization, and query expansion. Furthermore, error analysis is performed for each query with different NLP techniques. To the best of our knowledge, this work is the first attempt for preparing a standardized information retrieval evaluation test collection for the Urdu language.
乌尔都语信息检索评价与排序的集合
乌尔都语是一种广泛使用的语言,全球有1.63亿人使用。乌尔都语由于其丰富的形态特征和大量的使用者,使得乌尔都语的信息检索受到了研究界的特别关注。总的来说,对乌尔都语的IR评价任务的探索并不广泛。最重要的缺失因素是乌尔都语特有的标准化评价语料库的可用性。在本研究中,我们提出并构建了一个标准的乌尔都语文献IR评价测试集,并将其命名为乌尔都语检索评价集(CURE)。我们使用两个IR模型从50万个抓取文档的大集合中针对50个不同的查询选择了1,096个唯一文档。测试收集的目的是评估IR模型、排序算法和不同的自然语言处理技术。接下来,我们对选定的文档进行二元相关性判断。我们还为特定于测试集合的词序化和查询展开构建了另外两个语言资源。使用四种检索模型对测试集进行评估,并使用停止词列表、词序化和查询扩展。此外,使用不同的NLP技术对每个查询执行错误分析。据我们所知,这项工作是为乌尔都语准备标准化信息检索评估测试集的第一次尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信