A novel approach for ANFIS modelling based on Grey system theory for thermal error compensation

Ali M. Abdulshahed, A. Longstaff, S. Fletcher
{"title":"A novel approach for ANFIS modelling based on Grey system theory for thermal error compensation","authors":"Ali M. Abdulshahed, A. Longstaff, S. Fletcher","doi":"10.1109/UKCI.2014.6930155","DOIUrl":null,"url":null,"abstract":"The fast and accurate modelling of thermal errors in machining is an important aspect for the implementation of thermal error compensation. This paper presents a novel modelling approach for thermal error compensation on CNC machine tools. The method combines the Adaptive Neuro Fuzzy Inference System (ANFIS) and Grey system theory to predict thermal errors in machining. Instead of following a traditional approach, which utilises original data patterns to construct the ANFIS model, this paper proposes to exploit Accumulation Generation Operation (AGO) to simplify the modelling procedures. AGO, a basis of the Grey system theory, is used to uncover a development tendency so that the features and laws of integration hidden in the chaotic raw data can be sufficiently revealed. AGO properties make it easier for the proposed model to design and predict. According to the simulation results, the proposed model demonstrates stronger prediction power than standard ANFIS model only with minimum number of training samples.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The fast and accurate modelling of thermal errors in machining is an important aspect for the implementation of thermal error compensation. This paper presents a novel modelling approach for thermal error compensation on CNC machine tools. The method combines the Adaptive Neuro Fuzzy Inference System (ANFIS) and Grey system theory to predict thermal errors in machining. Instead of following a traditional approach, which utilises original data patterns to construct the ANFIS model, this paper proposes to exploit Accumulation Generation Operation (AGO) to simplify the modelling procedures. AGO, a basis of the Grey system theory, is used to uncover a development tendency so that the features and laws of integration hidden in the chaotic raw data can be sufficiently revealed. AGO properties make it easier for the proposed model to design and predict. According to the simulation results, the proposed model demonstrates stronger prediction power than standard ANFIS model only with minimum number of training samples.
基于灰色系统理论的热误差补偿ANFIS建模新方法
快速准确地建模加工过程中的热误差是实现热误差补偿的一个重要方面。提出了一种新的数控机床热误差补偿建模方法。该方法将自适应神经模糊推理系统(ANFIS)与灰色系统理论相结合,对加工过程中的热误差进行预测。与传统的利用原始数据模式构建ANFIS模型的方法不同,本文提出利用积累生成操作(AGO)来简化建模过程。利用灰色系统理论的基础AGO来揭示一种发展趋势,从而充分揭示混沌原始数据中隐藏的集成特征和规律。AGO的特性使所提出的模型更容易设计和预测。仿真结果表明,在训练样本数量较少的情况下,该模型比标准ANFIS模型具有更强的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信