Robust vehicle tracking for urban traffic videos at intersections

C. Li, A. Chiang, G. Dobler, Y. Wang, Kun Xie, K. Ozbay, M. Ghandehari, J. Zhou, D. Wang
{"title":"Robust vehicle tracking for urban traffic videos at intersections","authors":"C. Li, A. Chiang, G. Dobler, Y. Wang, Kun Xie, K. Ozbay, M. Ghandehari, J. Zhou, D. Wang","doi":"10.1109/AVSS.2016.7738075","DOIUrl":null,"url":null,"abstract":"We develop a robust, unsupervised vehicle tracking system for videos of very congested road intersections in urban environments. Raw tracklets from the standard Kanade-Lucas-Tomasi tracking algorithm are treated as sample points and grouped to form different vehicle candidates. Each tracklet is described by multiple features including position, velocity, and a foreground score derived from robust PCA background subtraction. By considering each tracklet as a node in a graph, we build the adjacency matrix for the graph based on the feature similarity between the tracklets and group these tracklets using spectral embedding and Dirichelet Process Gaussian Mixture Models. The proposed system yields excellent performance for traffic videos captured in urban environments and highways.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We develop a robust, unsupervised vehicle tracking system for videos of very congested road intersections in urban environments. Raw tracklets from the standard Kanade-Lucas-Tomasi tracking algorithm are treated as sample points and grouped to form different vehicle candidates. Each tracklet is described by multiple features including position, velocity, and a foreground score derived from robust PCA background subtraction. By considering each tracklet as a node in a graph, we build the adjacency matrix for the graph based on the feature similarity between the tracklets and group these tracklets using spectral embedding and Dirichelet Process Gaussian Mixture Models. The proposed system yields excellent performance for traffic videos captured in urban environments and highways.
交叉口城市交通视频的鲁棒车辆跟踪
我们开发了一个强大的,无监督的车辆跟踪系统,用于城市环境中非常拥挤的道路交叉路口的视频。来自标准Kanade-Lucas-Tomasi跟踪算法的原始轨迹被视为样本点并分组以形成不同的候选车辆。每个tracklet由多个特征描述,包括位置、速度和前景分数,这些特征来自于稳健的PCA背景减除。将每个轨道子视为图中的一个节点,根据轨道子之间的特征相似性构建图的邻接矩阵,并使用谱嵌入和Dirichelet过程高斯混合模型对轨道子进行分组。所提出的系统在城市环境和高速公路上拍摄的交通视频具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信