Identifying the Important Contributory Factors From Maintenance Error Decision Aid (MEDA) Data

Michael Newman, Steve Scott
{"title":"Identifying the Important Contributory Factors From Maintenance Error Decision Aid (MEDA) Data","authors":"Michael Newman, Steve Scott","doi":"10.1027/2192-0923/a000226","DOIUrl":null,"url":null,"abstract":"Abstract. Aviation maintenance organizations that monitor frequencies of contributory factor taxonomy codes historically struggle to identify which contributory factors are most potent. This research used Boeing’s Maintenance Error Decision Aid (MEDA) to categorize 138 aviation maintenance accident, incident, and occurrence report narratives. Analyses of contingency tables using Pearson’s chi-square, lambda, and odds ratio statistics revealed that a modest frequency of communication was highly significantly associated with leadership and supervision, individual factors, and technical knowledge contributory factors. The results demonstrate that use of these analyses goes beyond frequency and singular associative methods to identify the presence and strength of associations between contributory factors.","PeriodicalId":121896,"journal":{"name":"Aviation Psychology and Applied Human Factors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation Psychology and Applied Human Factors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1027/2192-0923/a000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Aviation maintenance organizations that monitor frequencies of contributory factor taxonomy codes historically struggle to identify which contributory factors are most potent. This research used Boeing’s Maintenance Error Decision Aid (MEDA) to categorize 138 aviation maintenance accident, incident, and occurrence report narratives. Analyses of contingency tables using Pearson’s chi-square, lambda, and odds ratio statistics revealed that a modest frequency of communication was highly significantly associated with leadership and supervision, individual factors, and technical knowledge contributory factors. The results demonstrate that use of these analyses goes beyond frequency and singular associative methods to identify the presence and strength of associations between contributory factors.
从维修错误决策辅助(MEDA)数据中识别重要的影响因素
摘要监控促成因素分类代码频率的航空维修组织一直在努力确定哪些促成因素最有效。本研究使用波音公司的维修错误决策辅助(MEDA)对138个航空维修事故、事件和发生报告叙述进行分类。使用Pearson卡方、λ和比值比统计分析列联表显示,适度的沟通频率与领导和监督、个人因素和技术知识贡献因素高度显著相关。结果表明,这些分析的使用超越了频率和奇异关联方法,以确定促成因素之间关联的存在和强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信