Ontology-Based Self-Reconfiguring Guidance, Navigation, and Control for Planetary Rovers

Guy Burroughes, Yang Gao
{"title":"Ontology-Based Self-Reconfiguring Guidance, Navigation, and Control for Planetary Rovers","authors":"Guy Burroughes, Yang Gao","doi":"10.2514/1.I010378","DOIUrl":null,"url":null,"abstract":"Certain limitations exist in autonomous software and guidance, navigation, and control architectures developed for extraterrestrial planetary exploration rovers in regard to fault tolerance, changes in environment, and changes in rover capabilities. To address these limitations, this paper outlines a self-reconfiguring guidance, navigation, and control architecture, using an ontology-based rational agent to enable autonomous reconfiguration of mission goals, software architecture, software components, and the control of hardware components during the run time. This new architecture was evaluated through implementation onboard a rover and tested in challenging, Mars-like environments, both simulated and real world, and was found to be highly reliable, fault tolerant, and adaptable.","PeriodicalId":179117,"journal":{"name":"J. Aerosp. Inf. Syst.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Aerosp. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.I010378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Certain limitations exist in autonomous software and guidance, navigation, and control architectures developed for extraterrestrial planetary exploration rovers in regard to fault tolerance, changes in environment, and changes in rover capabilities. To address these limitations, this paper outlines a self-reconfiguring guidance, navigation, and control architecture, using an ontology-based rational agent to enable autonomous reconfiguration of mission goals, software architecture, software components, and the control of hardware components during the run time. This new architecture was evaluated through implementation onboard a rover and tested in challenging, Mars-like environments, both simulated and real world, and was found to be highly reliable, fault tolerant, and adaptable.
基于本体的行星漫游车自重构制导、导航和控制
针对地外行星探测漫游者开发的自主软件和制导、导航和控制架构在容错、环境变化和漫游者能力变化方面存在一定的局限性。为了解决这些限制,本文概述了一种自重新配置制导、导航和控制体系结构,使用基于本体的理性代理来实现任务目标、软件体系结构、软件组件和运行时硬件组件控制的自主重新配置。这种新架构通过在漫游车上实施进行了评估,并在具有挑战性的类似火星的环境中进行了测试,包括模拟和现实世界,并被发现具有高度可靠性,容错性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信