Unsteady airflow classification by artificial neural networks

S. Mcgibney, A. Zaknich
{"title":"Unsteady airflow classification by artificial neural networks","authors":"S. Mcgibney, A. Zaknich","doi":"10.1109/ICONIP.1999.844688","DOIUrl":null,"url":null,"abstract":"A multilayer perceptron classifier is applied to the classification of gas flow states. A number of suitable discriminate features are determined heuristically for the categorization of gas flow states, including the background (machinery and wind tunnel noise), laminar flow (sinusoidal signal), transition 1 (frequency-resonant shifts), transition 2 (instantaneous changes in phase and turbulent characteristics) and turbulent flow (random noise). This technique can be used to develop an automatic real-time classifier for gas flow.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A multilayer perceptron classifier is applied to the classification of gas flow states. A number of suitable discriminate features are determined heuristically for the categorization of gas flow states, including the background (machinery and wind tunnel noise), laminar flow (sinusoidal signal), transition 1 (frequency-resonant shifts), transition 2 (instantaneous changes in phase and turbulent characteristics) and turbulent flow (random noise). This technique can be used to develop an automatic real-time classifier for gas flow.
基于人工神经网络的非定常气流分类
将多层感知器分类器应用于气体流动状态的分类。启发式地确定了一些合适的判别特征,用于气体流动状态的分类,包括背景(机械和风洞噪声)、层流(正弦信号)、过渡1(频率共振位移)、过渡2(相位和湍流特性的瞬时变化)和湍流(随机噪声)。该技术可用于开发气体流量自动实时分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信