Optimizing bioengineered vascular systems: A genetic algorithm approach

Sima Mehri, Curtis Larsen, G. Podgorski, N. Flann
{"title":"Optimizing bioengineered vascular systems: A genetic algorithm approach","authors":"Sima Mehri, Curtis Larsen, G. Podgorski, N. Flann","doi":"10.1109/CIBCB.2017.8058562","DOIUrl":null,"url":null,"abstract":"Efficient metabolism in bioengineered tissues requires a robust vascular system to provide healthy microenvironments to the cells and stroma. Such networks form spontaneously during embryogenesis from randomly distributed endothelial cells. There is a need to bioengineer endothelial cells so that network formation and operation is optimal for synthetic tissues. This work introduces a computational model that simulates de novo vascular development and assesses the effectiveness of the network in delivering nutrients and extracting waste from tissue. A genetic algorithm was employed to identify parameter values of the vaculogenesis model that lead to the most efficient and robust vascular structures. These parameter values control the behavior of cell-level mechanisms such as chemotaxis and adhesion. These studies demonstrate that genetic algorithms are effective at identifying model parameters that lead to near-optimal networks. This work suggests that computational modeling and optimization approaches may improve the effectiveness of engineered tissues by suggesting target cellular mechanisms for modification.","PeriodicalId":283115,"journal":{"name":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2017.8058562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Efficient metabolism in bioengineered tissues requires a robust vascular system to provide healthy microenvironments to the cells and stroma. Such networks form spontaneously during embryogenesis from randomly distributed endothelial cells. There is a need to bioengineer endothelial cells so that network formation and operation is optimal for synthetic tissues. This work introduces a computational model that simulates de novo vascular development and assesses the effectiveness of the network in delivering nutrients and extracting waste from tissue. A genetic algorithm was employed to identify parameter values of the vaculogenesis model that lead to the most efficient and robust vascular structures. These parameter values control the behavior of cell-level mechanisms such as chemotaxis and adhesion. These studies demonstrate that genetic algorithms are effective at identifying model parameters that lead to near-optimal networks. This work suggests that computational modeling and optimization approaches may improve the effectiveness of engineered tissues by suggesting target cellular mechanisms for modification.
优化生物工程血管系统:一种遗传算法方法
生物工程组织的高效代谢需要强健的血管系统为细胞和基质提供健康的微环境。这种网络在胚胎发生过程中由随机分布的内皮细胞自发形成。有必要对内皮细胞进行生物工程,使网络的形成和运作对合成组织是最佳的。这项工作引入了一个模拟新生血管发育的计算模型,并评估了网络在输送营养物质和从组织中提取废物方面的有效性。采用遗传算法来确定空泡发生模型的参数值,从而获得最有效和最健壮的血管结构。这些参数值控制细胞水平机制的行为,如趋化性和粘附。这些研究表明,遗传算法在识别导致接近最优网络的模型参数方面是有效的。这项工作表明,计算建模和优化方法可以通过提出修饰的靶细胞机制来提高工程组织的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信