Nonlinear Identification of Friction Model Using Concave/Convex Parameterization

S. Grami, P. Bigras
{"title":"Nonlinear Identification of Friction Model Using Concave/Convex Parameterization","authors":"S. Grami, P. Bigras","doi":"10.1109/ISIE.2006.295605","DOIUrl":null,"url":null,"abstract":"This paper presents the min-max non linear identification method applied to a friction model. This static friction model includes the Coulomb and viscous friction with stiction and Stribeck effect. The estimator used for identification is based on concave/convex parameterization and a min-max optimization problem. Based on the persistence of excitation assumption, the convergence of the estimator is proved. Simulation results demonstrate the good performance of the identification approach","PeriodicalId":296467,"journal":{"name":"2006 IEEE International Symposium on Industrial Electronics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2006.295605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the min-max non linear identification method applied to a friction model. This static friction model includes the Coulomb and viscous friction with stiction and Stribeck effect. The estimator used for identification is based on concave/convex parameterization and a min-max optimization problem. Based on the persistence of excitation assumption, the convergence of the estimator is proved. Simulation results demonstrate the good performance of the identification approach
基于凹凸参数化的摩擦模型非线性辨识
本文提出了应用于摩擦模型的最小-最大非线性辨识方法。该静摩擦模型包括库仑摩擦和粘滞摩擦,并考虑了粘滞和斯特里贝克效应。用于辨识的估计器是基于凹/凸参数化和最小-最大优化问题。基于激励的持续性假设,证明了估计量的收敛性。仿真结果证明了该方法的良好性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信