{"title":"Geometric curve flows in low dimensional Cayley–Klein geometries","authors":"Joe Benson, F. Valiquette","doi":"10.1093/integr/xyaa003","DOIUrl":null,"url":null,"abstract":"\n Using the method of equivariant moving frames, we derive the evolution equations for the curvature invariants of arc-length parametrized curves under arc-length preserving geometric flows in two-, three- and four-dimensional Cayley–Klein geometries. In two and three dimensions, we obtain recursion operators, which show that the curvature evolution equations obtained are completely integrable.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyaa003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Using the method of equivariant moving frames, we derive the evolution equations for the curvature invariants of arc-length parametrized curves under arc-length preserving geometric flows in two-, three- and four-dimensional Cayley–Klein geometries. In two and three dimensions, we obtain recursion operators, which show that the curvature evolution equations obtained are completely integrable.