{"title":"Exploiting High-Bandwidth Memory for FPGA-Acceleration of Inference on Sum-Product Networks","authors":"Lukas Weber, John M. Wirth, Lukas Sommer, A. Koch","doi":"10.1109/IPDPSW55747.2022.00028","DOIUrl":null,"url":null,"abstract":"Due to the memory wall becoming increasingly problematic in high-performance computing, there is a steady push to improve memory architectures, mainly focusing on better bandwidth as well as latency. One of the results of this push is the development of High-Bandwidth Memory (HBM) which is an alternative to the regular DRAM typically used by accelerator-cards. This work adapts an existing accelerator architecture for inference on Sum-Product Networks (SPN) to exploit the HBM present on more recent high-performance FPGA-accelerator cards. The evaluation shows that the use of HBM enables almost linear scaling of the performance due to the embarrassingly parallel nature of batch-wise SPN inference. It is also shown that the only hindrance to this scaling is the limited bandwidth available for data-transfers between host and FPGA. Even with this bottleneck, the prior FPGA-based implementation is outperformed by up to 1.50x (geo.-mean 1.29x). Similarly, the CPU and GPU baselines are outperformed by up to 2.4x (geo.-mean 1.6x) and 8.4x (geo.-mean 6.9x) respectively. Based on the evaluation, the scaling potential of HBM-based FPGA-accelerators is explored to give an outlook on what is to come with future generations of PCIe-based interfaces.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the memory wall becoming increasingly problematic in high-performance computing, there is a steady push to improve memory architectures, mainly focusing on better bandwidth as well as latency. One of the results of this push is the development of High-Bandwidth Memory (HBM) which is an alternative to the regular DRAM typically used by accelerator-cards. This work adapts an existing accelerator architecture for inference on Sum-Product Networks (SPN) to exploit the HBM present on more recent high-performance FPGA-accelerator cards. The evaluation shows that the use of HBM enables almost linear scaling of the performance due to the embarrassingly parallel nature of batch-wise SPN inference. It is also shown that the only hindrance to this scaling is the limited bandwidth available for data-transfers between host and FPGA. Even with this bottleneck, the prior FPGA-based implementation is outperformed by up to 1.50x (geo.-mean 1.29x). Similarly, the CPU and GPU baselines are outperformed by up to 2.4x (geo.-mean 1.6x) and 8.4x (geo.-mean 6.9x) respectively. Based on the evaluation, the scaling potential of HBM-based FPGA-accelerators is explored to give an outlook on what is to come with future generations of PCIe-based interfaces.