Ensemble Riemannian Data Assimilation over the Wasserstein Space

S. Tamang, A. Ebtehaj, P. V. van Leeuwen, Dongmian Zou, Gilad Lerman
{"title":"Ensemble Riemannian Data Assimilation over the Wasserstein\nSpace","authors":"S. Tamang, A. Ebtehaj, P. V. van Leeuwen, Dongmian Zou, Gilad Lerman","doi":"10.5194/NPG-2021-11","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper, we present an ensemble data assimilation paradigm over a Riemannian manifold equipped with the Wasserstein metric. Unlike the Eulerian penalization of error in the Euclidean space, the Wasserstein metric can capture translation and difference between the shapes of square-integrable probability distributions of the background state and observations – enabling to formally penalize geophysical biases in state-space with non-Gaussian distributions. The new approach is applied to dissipative and chaotic evolutionary dynamics and its potential advantages and limitations are highlighted compared to the classic variational and filtering data assimilation approaches under systematic and random errors.\n","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/NPG-2021-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract. In this paper, we present an ensemble data assimilation paradigm over a Riemannian manifold equipped with the Wasserstein metric. Unlike the Eulerian penalization of error in the Euclidean space, the Wasserstein metric can capture translation and difference between the shapes of square-integrable probability distributions of the background state and observations – enabling to formally penalize geophysical biases in state-space with non-Gaussian distributions. The new approach is applied to dissipative and chaotic evolutionary dynamics and its potential advantages and limitations are highlighted compared to the classic variational and filtering data assimilation approaches under systematic and random errors.
WassersteinSpace上的集合黎曼数据同化
摘要在本文中,我们提出了一个集成数据同化范式在黎曼流形配备了瓦瑟斯坦度量。与欧几里得空间中的欧拉误差惩罚不同,Wasserstein度量可以捕获背景状态和观测值的平方可积概率分布形状之间的平移和差异,从而能够在非高斯分布的状态空间中正式惩罚地球物理偏差。将该方法应用于耗散和混沌演化动力学,并与系统误差和随机误差下的经典变分和滤波数据同化方法相比,突出了其潜在的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信