Improved Unconstrained Energy Functional Method for Eigensolvers in Electronic Structure Calculations

M. D. Ben, O. Marques, A. Canning
{"title":"Improved Unconstrained Energy Functional Method for Eigensolvers in Electronic Structure Calculations","authors":"M. D. Ben, O. Marques, A. Canning","doi":"10.1145/3337821.3337914","DOIUrl":null,"url":null,"abstract":"This paper reports on the performance of a preconditioned conjugate gradient based iterative eigensolver using an unconstrained energy functional minimization scheme. In contrast to standard implementations, this scheme avoids an explicit reorthogonalization of the trial eigenvectors and becomes an attractive alternative for the solution of very large problems. The unconstrained formulation is implemented in the first-principles materials and chemistry CP2K code, which performs electronic structure calculations based on a density functional theory approximation to the solution of the many-body Schrödinger equation. We study the convergence of the unconstrained formulation, as well as its parallel scaling, on a Cray XC40 at the National Energy Research Scientific Computing Center (NERSC). The systems we use in our studies are bulk liquid water, a supramolecular catalyst gold(III)-complex, a bilayer of MoS2-WSe2 and a divacancy point defect in silicon, with the number of atoms ranging from 2,247 to 12,288. We show that the unconstrained formulation with an appropriate preconditioner has good convergence properties and scales well to 230k cores, roughly 38% of the full machine.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper reports on the performance of a preconditioned conjugate gradient based iterative eigensolver using an unconstrained energy functional minimization scheme. In contrast to standard implementations, this scheme avoids an explicit reorthogonalization of the trial eigenvectors and becomes an attractive alternative for the solution of very large problems. The unconstrained formulation is implemented in the first-principles materials and chemistry CP2K code, which performs electronic structure calculations based on a density functional theory approximation to the solution of the many-body Schrödinger equation. We study the convergence of the unconstrained formulation, as well as its parallel scaling, on a Cray XC40 at the National Energy Research Scientific Computing Center (NERSC). The systems we use in our studies are bulk liquid water, a supramolecular catalyst gold(III)-complex, a bilayer of MoS2-WSe2 and a divacancy point defect in silicon, with the number of atoms ranging from 2,247 to 12,288. We show that the unconstrained formulation with an appropriate preconditioner has good convergence properties and scales well to 230k cores, roughly 38% of the full machine.
电子结构计算中特征解的改进无约束能量泛函方法
本文报道了一种基于无约束能量泛函最小化格式的预条件共轭梯度迭代特征解的性能。与标准实现相比,该方案避免了试验特征向量的显式重新正交化,并成为解决非常大问题的有吸引力的替代方案。该无约束公式在第一性原理材料与化学CP2K代码中实现,该代码基于密度泛函理论近似求解多体Schrödinger方程进行电子结构计算。我们在国家能源研究科学计算中心(NERSC)的Cray XC40上研究了无约束公式的收敛性及其并行缩放。我们在研究中使用的系统是大量液态水,超分子催化剂金(III)配合物,MoS2-WSe2双分子层和硅的距离点缺陷,原子数从2,247到12,288不等。我们表明,具有适当前置条件的无约束公式具有良好的收敛特性,并且可以很好地扩展到23万核,大约占整机的38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信