A Multi-Label Computer-aided Diagnoses System for Detecting and Diagnosing Diabetic Retinopathy

Eman AbdelMaksoud, S. Barakat, Mohammed M Elmogy
{"title":"A Multi-Label Computer-aided Diagnoses System for Detecting and Diagnosing Diabetic Retinopathy","authors":"Eman AbdelMaksoud, S. Barakat, Mohammed M Elmogy","doi":"10.1109/ICCES48960.2019.9068188","DOIUrl":null,"url":null,"abstract":"Multi-label classification (MLC) is considered an active research topic, especially in medical image analysis. We used MLC to diagnose the multiple different grades of Diabetic Retinopathy (DR). DR is caused when a patient's blood pressure and blood sugar are too high and results in damage in the blood vessels (BVs). BVs supply the blood to the retina. If the retina does not get the blood it needs, it can eventually cause permanent blindness. The early diagnosis of different DR grades leads the ophthalmologists to efficient treatment. In this paper, we developed a multi-label computer-aided diagnosis (ML-CAD) system to apply MLC for different DR grades using color fundus images. Our system utilizes 11 texture features descriptors by retrieving the average of the Gray Level Run Length Matrix (GLRM) on four directions 0°, 45°, 90°, and 135°. It distinguishes the normal from DR cases by supplying the extracted features to the support vector machine (SVM) classifier. Then, the proposed CAD system segments some significant characteristics from DR fundus images, which are BV, exudates (EX), microaneurysms (MA), and hemorrhages (HM). After that, it calculates the Gray Level Co-occurrence Matrix (GLCM), regions of interest (ROIs) areas, and BV bifurcation point's calculations. Finally, the feature vector is trained and tested using a multi-label SVM (MSVM) classifier generates a suitable DR grade. We used four various benchmark datasets to evaluate the performance of our system in terms of accuracy (ACC), sensitivity (SEN), specificity (SPE), the area under the curve (AVC), and micro F1 measure. The experiments confirmed that our ML-CAD system outperforms the other diagnosing DR systems.","PeriodicalId":136643,"journal":{"name":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES48960.2019.9068188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Multi-label classification (MLC) is considered an active research topic, especially in medical image analysis. We used MLC to diagnose the multiple different grades of Diabetic Retinopathy (DR). DR is caused when a patient's blood pressure and blood sugar are too high and results in damage in the blood vessels (BVs). BVs supply the blood to the retina. If the retina does not get the blood it needs, it can eventually cause permanent blindness. The early diagnosis of different DR grades leads the ophthalmologists to efficient treatment. In this paper, we developed a multi-label computer-aided diagnosis (ML-CAD) system to apply MLC for different DR grades using color fundus images. Our system utilizes 11 texture features descriptors by retrieving the average of the Gray Level Run Length Matrix (GLRM) on four directions 0°, 45°, 90°, and 135°. It distinguishes the normal from DR cases by supplying the extracted features to the support vector machine (SVM) classifier. Then, the proposed CAD system segments some significant characteristics from DR fundus images, which are BV, exudates (EX), microaneurysms (MA), and hemorrhages (HM). After that, it calculates the Gray Level Co-occurrence Matrix (GLCM), regions of interest (ROIs) areas, and BV bifurcation point's calculations. Finally, the feature vector is trained and tested using a multi-label SVM (MSVM) classifier generates a suitable DR grade. We used four various benchmark datasets to evaluate the performance of our system in terms of accuracy (ACC), sensitivity (SEN), specificity (SPE), the area under the curve (AVC), and micro F1 measure. The experiments confirmed that our ML-CAD system outperforms the other diagnosing DR systems.
糖尿病视网膜病变的多标签计算机辅助诊断系统
多标签分类(MLC)被认为是一个活跃的研究课题,特别是在医学图像分析中。我们使用MLC诊断多种不同级别的糖尿病视网膜病变(DR)。当患者的血压和血糖过高并导致血管受损时,就会引起糖尿病。血管为视网膜供血。如果视网膜得不到所需的血液,最终会导致永久性失明。不同程度DR的早期诊断有助于眼科医生进行有效的治疗。在本文中,我们开发了一个多标签计算机辅助诊断(ML-CAD)系统,利用彩色眼底图像将MLC应用于不同程度的DR。我们的系统通过检索灰度运行长度矩阵(GLRM)在0°、45°、90°和135°四个方向上的平均值,利用了11个纹理特征描述符。它通过将提取的特征提供给支持向量机(SVM)分类器来区分正常情况和DR情况。然后,提出的CAD系统从DR眼底图像中分割出一些重要特征,包括BV、渗出物(EX)、微动脉瘤(MA)和出血(HM)。然后计算灰度共生矩阵(GLCM)、感兴趣区域(roi)面积和BV分分叉点的计算。最后,使用多标签支持向量机(MSVM)分类器对特征向量进行训练和测试,生成合适的DR等级。我们使用四种不同的基准数据集来评估我们的系统在准确性(ACC)、灵敏度(SEN)、特异性(SPE)、曲线下面积(AVC)和微F1测量方面的性能。实验证明,我们的ML-CAD系统优于其他诊断DR系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信