Photochemical Hole Burning in the Soret Absorption Band of Zinc-tetrabenzoporphin Derivative by Two-photon Excitation

Martin Vacha, S. Machida, K. Horie
{"title":"Photochemical Hole Burning in the Soret Absorption Band of Zinc-tetrabenzoporphin Derivative by Two-photon Excitation","authors":"Martin Vacha, S. Machida, K. Horie","doi":"10.1364/shbs.1994.thf2","DOIUrl":null,"url":null,"abstract":"Line-narrowing spectroscopic techniques, such as site-selection spectroscopy (fluorescence line narrowing) and spectral hole burning, have, to our knowledge, so far failed to eliminate the effect of inhomogeneous broadening of optical transitions to the second and/or higher excited singlet electronic states (Soret absorption band) of porphin-type dyes in low temperature matrices, mainly due to: (1) Perturbations between different electronic states and resulting broadening of the homogeneous spectral bands [1], and (2) Increasing density of vibronic states with increasing transition energy and lack of correlation between individual states of different molecules. However, in a class of porphin derivatives - free-base and metallotetrabenzoporhines (TBP) - the former effects are substantially reduced. As a result, quasiline structure of S0-S2 transitions of ZnTBP in an Ar matrix [2], and later of ZnTBP in supersonic expansions [3] were observed. Further, fluorescence from S2 state of ZnTBP [2,4] and recently also of Zn-tetratolyl-TBP [5] and Zn-TPP [6] were reported.","PeriodicalId":443330,"journal":{"name":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/shbs.1994.thf2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Line-narrowing spectroscopic techniques, such as site-selection spectroscopy (fluorescence line narrowing) and spectral hole burning, have, to our knowledge, so far failed to eliminate the effect of inhomogeneous broadening of optical transitions to the second and/or higher excited singlet electronic states (Soret absorption band) of porphin-type dyes in low temperature matrices, mainly due to: (1) Perturbations between different electronic states and resulting broadening of the homogeneous spectral bands [1], and (2) Increasing density of vibronic states with increasing transition energy and lack of correlation between individual states of different molecules. However, in a class of porphin derivatives - free-base and metallotetrabenzoporhines (TBP) - the former effects are substantially reduced. As a result, quasiline structure of S0-S2 transitions of ZnTBP in an Ar matrix [2], and later of ZnTBP in supersonic expansions [3] were observed. Further, fluorescence from S2 state of ZnTBP [2,4] and recently also of Zn-tetratolyl-TBP [5] and Zn-TPP [6] were reported.
双光子激发下四苯并卟啉锌衍生物的光化学孔燃烧
据我们所知,选位光谱(荧光线窄化)和光谱空穴燃烧等窄线光谱技术迄今未能消除低温基质中卟啉型染料的光学跃迁向第二和/或更高激发单重态(索瑞特吸收带)的不均匀加宽的影响,主要原因是:(1)不同电子态之间的扰动导致均匀谱带的展宽[1];(2)随着跃迁能量的增加,振动态的密度增加,不同分子的单个态之间缺乏相关性。然而,在一类卟啉衍生物中-游离碱和金属四苯并卟啉(TBP) -前者的影响大大降低。因此,观察到ZnTBP在Ar基体中的S0-S2跃迁的准线结构[2],以及ZnTBP在超音速膨胀中的准线结构[3]。此外,还报道了ZnTBP[2,4]和zn -四atolyl- tbp[5]和Zn-TPP[6]的S2态荧光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信