ON THE SELBERG INTEGRAL OF THE k-DIVISOR FUNCTION AND THE 2k-TH MOMENT OF THE RIEMANN ZETA-FUNCTION

G. Coppola
{"title":"ON THE SELBERG INTEGRAL OF THE k-DIVISOR FUNCTION AND THE 2k-TH MOMENT OF THE RIEMANN ZETA-FUNCTION","authors":"G. Coppola","doi":"10.2298/PIM1002099C","DOIUrl":null,"url":null,"abstract":"In the literature one can find links between the 2k-th moment of the Riemann zeta-function and averages involving dk(n), the divisor function generated by ζ k (s). There are, in fact, two bounds: one for the 2k-th moment of ζ(s) coming from a simple average of correlations of the dk; and the other, which is a more recent approach, for the Selberg integral involving dk(n), ap- plying known bounds for the 2k-th moment of the zeta-function. Building on the former work, we apply an elementary approach (based on arithmetic averages) in order to get the reverse link to the second work; i.e., we obtain (conditional) bounds for the 2k-th moment of the zeta-function from the Sel- berg integral bounds involving dk(n).","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1002099C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In the literature one can find links between the 2k-th moment of the Riemann zeta-function and averages involving dk(n), the divisor function generated by ζ k (s). There are, in fact, two bounds: one for the 2k-th moment of ζ(s) coming from a simple average of correlations of the dk; and the other, which is a more recent approach, for the Selberg integral involving dk(n), ap- plying known bounds for the 2k-th moment of the zeta-function. Building on the former work, we apply an elementary approach (based on arithmetic averages) in order to get the reverse link to the second work; i.e., we obtain (conditional) bounds for the 2k-th moment of the zeta-function from the Sel- berg integral bounds involving dk(n).
关于k除数函数的塞尔伯格积分和黎曼函数的第k阶矩
在文献中,人们可以发现黎曼ζ函数的第k阶矩与由ζ k(s)产生的除数函数dk(n)的平均值之间的联系。事实上,有两个界限:一个是ζ(s)的第k阶矩,来自dk的简单平均;另一种是较新的方法,对于涉及dk(n)的Selberg积分,对函数的第k阶矩应用已知的边界。在前一项工作的基础上,我们应用了一种基本方法(基于算术平均)来获得与第二项工作的反向链接;即,我们从涉及dk(n)的Sel- berg积分界得到ζ函数的第k阶矩的(有条件的)界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信